Proving Theorems and Verifying Programs Automatically

Applied Logic for Computer Science

UWO – December 3, 2017
1 Introduction to SMT solving
2 Using Yices for checking assertions
3 Equality Reasoning
4 Theory Reasoning
1. Introduction to SMT solving

2. Using Yices for checking assertions

3. Equality Reasoning

4. Theory Reasoning
A logical formula . . .

\[
\text{sorted}(t, i, j) = \\
\forall k_1, k_2 : int . \ i \leq k_1 \land k_1 \leq k_2 \land k_2 \leq j \Rightarrow t[k_1] \leq t[k_2]
\]
... as seen by an SMT solver

\[\text{sorted}(t, i, j) = \]

\[\forall k_1, k_2 : \text{int} \]

\[\downarrow \]

\[i \leq k_1 \]
\[k_1 \leq k_2 \]
\[k_2 \leq j \]
\[t[k_1] \leq t[k_2] \]

- Instantiation
- Logic reasoning
- Theory reasoning (here: Arithmetic)
Satisfiability Modulo Theories

SMT provers divide the problem in three parts

- The **theory** part: equality reasoning, arithmetic reasoning, ...
- The **satisfiability** part: deals with logical connectors
 \(\land, \lor, \implies, \neg, \ldots \)
- The **instantiation** of quantified axioms

We will look at each of the three parts in turn
The different parts of an SMT solver

Theory 1 (Arithmetic) ↔ ⋮ ↔ Congruence Closure (Congruence) ↔ Union-Find (Equality) ↔ Sat-Solver \(\land, \lor, \Rightarrow, \Leftrightarrow \) ↔ Instantiation \(\forall \exists \)
A more detailed example

Hypotheses

- $H_1 : a > 0$
- $H_2 : \forall xy. x \geq y \rightarrow \text{max}(x, y) = x$

Goal

$G : f(\text{max}(a, 0)) = f(a)$
Solved by an SMT Solver (1)

Negate the Goal

\[H_1 \land H_2 \rightarrow G \] becomes \[H_1 \land H_2 \land \neg G \]

Launch Sat-Solver

Assume \(H_1, H_2 \) and \(\neg G \) and try to derive a contradiction

- Assume the inequality \(a > 0 \)
- Register the lemma: \(\forall xy. x \geq y \rightarrow \max(x, y) = x \)
- Assume the inequality \(f(\max(a, 0)) \neq f(a) \)
- Currently no contradiction!

Instantiation

Specialize the lemma by applying it to \(a \) and \(0 \) and replace \(\rightarrow: \)

\[a \geq 0 \rightarrow \max(a, 0) = a \iff a < 0 \lor \max(a, 0) = a \]
Solved by an SMT Solver (2)

Split the disjunction

First assume $a < 0$, then assume $\neg(a < 0)$, try to find a contradiction in both cases

Assuming $a < 0$

Direct contradiction with H_1 (using knowledge about the symbols $<$ and \geq)

Assuming $\neg(a < 0)$

- It follows $\max(a, 0) = a$
- Deduce $f(\max(a, 0)) = f(a)$
- Contradiction with $\neg G$

We have obtained a contradiction in all cases, the negated formula is unsatisfiable, that means the input formula is valid!
Plan

1. Introduction to SMT solving

2. Using Yices for checking assertions

3. Equality Reasoning

4. Theory Reasoning
Using `yices` interactively

moreno@gorgosaurus:~$ yices -i
Yices (version 1.0.40). Copyright SRI International.
GMP (version 5.1.1). Copyright Free Software Foundation, Inc.
Build date: Wed Dec 4 09:42:16 PST 2013
Type `(exit)` with parentheses to exit.
Type `(help)` with parentheses for help.
yices > (define f::(-> int int))

yices > (define i::int)

yices > (define j::int)

yices > (assert (= (- i 1) (+ j 2)))

yices > (assert (/= (f (+ i 3)) (f (+ j 6))))
unsat

yices >
moreno@gorgosaurus:~$ yices -i
Yices (version 1.0.40). Copyright SRI International.
GMP (version 5.1.1). Copyright Free Software Foundation, Inc.
Build date: Wed Dec 4 09:42:16 PST 2013
Type ‘(exit)’ with parentheses to exit.
Type ‘(help)’ with parentheses for help.
yices > (define x::int)

yices > (define y::int)

yices > (define z::int)

yices > (assert (= (+ (* 3 x) (* 6 y) z) 1))

yices > (assert (= z 2))

yices > (check)
unsat
Using yices interactively

Input file smt.ys

(define x::int)
(define y::int)
(define f:(-> int int))
(assert (/= (f (+ x 2)) (f (- y 1))))
(assert (= x (- y 4)))
(check)

Call on the command line

moreno@gorgosaurus:~$ yices -e smt.ys
sat
(= x 0)
(= y 4)
(= (f 2) 1)
(= (f 3) 5)
Plan

1. Introduction to SMT solving
2. Using Yices for checking assertions
3. Equality Reasoning
4. Theory Reasoning
Equality Reasoning

Theory 1 (Arithmetic)

...

Theory n

Union-Find (Equality)

Congruence Closure (Congruence)

Sat-Solver \(\land, \lor, \Rightarrow, \Leftrightarrow\)

Instantiation \(\forall, \exists\)
Equality reasoning - The problem

Terms
\[t ::= c \mid f(t_1, \cdots, t_n) \]

Given
a list of equations \(t = t' \)

We want to know
Does the equation \(t_1 = t_2 \) follow?

Using the axioms

- Reflexivity \(t = t \)
- Symmetry \(t_1 = t_2 \rightarrow t_2 = t_1 \)
- Transitivity \(t_1 = t_2 \land t_2 = t_3 \rightarrow t_1 = t_3 \)
- Congruence \(t_1 = t_2 \rightarrow f(t_1) = f(t_2) \)
Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a))))) = a$

We want to prove

$f(a) = a$

Proof

1. $f^5(a) = f^3(a)$ (Congruence)
2. $f^2(a) = f^3(a) = a$ (Transitivity, Symmetry)
3. $f^3(a) = f(f^2(a)) = f(a)$ (Congruence)
4. $f(a) = a$ (Transitivity of (2) and (3))
Disjoint Sets

- Goal: deal with the first three axioms efficiently
- Idea: put all terms into disjoint sets
- When two terms are in the same set, they are equal
- Initial state: every term is in his own set:

 \[t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5 \]

- After treating \(t_1 = t_3 \) and \(t_2 = t_5 \):

 \[t_1 \quad t_3 \quad t_2 \quad t_5 \quad t_4 \]

- After treating \(t_1 = t_2 \):

 \[t_1 \quad t_2 \quad t_3 \quad t_5 \quad t_4 \]

- Deciding \(t \equiv t' \) amounts to checking if \(t, t' \) are in the same set
Union-Find (1975)

- Represent each set by a tree with upward pointers:

```
     t_1
   /   \
 t_2    t_3
     /     \
    t_4
```

- The root is the representative
- Operation find to find the representative of any term: just follow the arrows
- Operation union to treat an equality: simply point one root to the other

```
     t_1
   /   \
 t_2    t_3
     /     \
    t_4
 +     
     t_5
   / \
 t_6
```

```
     t_1
   /   \
 t_2    t_3
     /     \
    t_4
```

Two important optimizations

- Keep trees small: let point root of smaller tree to root of larger tree
- **Path compression**: “flatten” trees, each time we are searching for a root \(r \) starting from \(t \), let \(t \) point directly to \(r \) afterwards
- Result: Algorithm is quasi-linear (optimal)
- **Incrementality**: we can add equations one by one, interleave equations \(t_1 = t_2 \) with queries \(t_1 \neq t_2 \)

Inequalities \(t_1 \neq t_2 \)

- Simply maintain the information that two sets of terms must be different
- Merging sets for which an inequality was registered leads to an inconsistency
Congruence Closure (1980)

- Deal with the fourth axiom: Congruence
 \[\forall xy. x = y \rightarrow f(x) = f(y) \]
 for any function symbol \(f \)

- Solution: represent a term by a directed acyclic graph (DAG) with sharing. Example: \(f(f(a, b), b) \)

```
  f
 /\  
f   f
 /\  
 a   b
```

- Add an equivalence relation to this graph (using union-find):

```
  f
 /\  
  f  f
 /\  
 a   b
```

represents \(f(f(a, b), b) = a \)
Finding new equalities

- Build a reverse dictionary mapping nodes to their fathers:

 \[a \mapsto f(a, b), g(a) \]
 \[b \mapsto f(a, b) \]

- Two new operations: find and merge.

 \[
 \text{merge}(t_1, t_2) = \\
 \text{union}(t_1, t_2); \\
 F_1, F_2 = \text{fathers}(t_1), \text{fathers}(t_2); \\
 \text{for each } x \text{ in } F_1, y \text{ in } F_2 \text{ do} \\
 \text{if congruent}(x, y) \text{ then merge}(x, y); \\
 \text{done}
 \]
Congruence Closure — Example

Given

- \(f^2(a) = f(f(a)) = a \)
- \(f^5(a) = f(f(f(f(f(a))))) = a \)
Congruence Closure — Example

Given

- \(f^2(a) = f(f(a)) = a \)
- \(f^5(a) = f(f(f(f(f(a))))) = a \)
Congruence Closure — Example

Given

- \(f^2(a) = f(f(a)) = a \)
- \(f^5(a) = f(f(f(f(f(a))))) = a \)
Congruence Closure — Example

Given

- \(f^2(a) = f(f(a)) = a \)
- \(f^5(a) = f(f(f(f(f(a))))) = a \)
Congruence Closure — Example

Given

- $f^2(a) = f(f(a)) = a$
- $f^5(a) = f(f(f(f(f(a))))) = a$

\[
\begin{array}{c}
\text{f(a)} = a \\
\end{array}
\]
Plan

1. Introduction to SMT solving
2. Using Yices for checking assertions
3. Equality Reasoning
4. Theory Reasoning
Theory Reasoning (Arithmetic)

Theory 1 (Arithmetic)

\[\vdash \]

Union-Find (Equality)

\[\vdash \]

Congruence Closure (Congruence)

\[\vdash \]

Sat-Solver
\[\land, \lor, \Rightarrow, \Leftrightarrow \]

\[\vdash \]

Instantiation
\[\forall \exists \]
Arithmetic reasoning

Arithmetic

- Interprets the function symbols $+, -, \times, \div$, and the arithmetic constants
- But also the relation symbols $\leq, <, \geq, >$

There are a few algorithms to deal with Linear Arithmetic

- Gauss Elimination (Equality only)
- Fourier-Motzkin
- Simplex Algorithm

We will look more closely at these methods
Gauss Elimination

Goal: deal with equalities in linear arithmetics

- Transform term into sums of monomials: $\sum_i^k c_i t_i$
- When treating an equality between such polynomials

$$\sum_i^k c_i t_i = \sum_j^k d_i s_i$$

isolate a monomial, say, t_1, and build the equation

$$t_1 = \sum_j^k \frac{d_i}{c_1} s_i - \sum_{i \neq 1}^k \frac{c_i}{c_1} t_i$$
Fourier-Motzkin Algorithm (1)

Goal: deal with inequalities in linear arithmetics

basic notions

- An inequality C in canonical form:

$$\sum_{i=1}^{n} a_i x_i \leq a_0 \quad a_i \in \mathbb{Q}$$

- Note αC the multiplication of an inequation with a coefficient α:

$$\sum_{i=1}^{n} \alpha a_i x_i \leq \alpha a_0$$

- Note $C_1 + C_2$ the addition of two inequations:

$$\sum_{i=1}^{n} (a_i + b_i) x_i \leq a_0 + b_0$$
Fourier-Motzkin Algorithm (2)

Set $I = \{C_1 \cdots C_n\}$ the starting set of inequations. Each step of the algorithm will eliminate a variable from the set of the equations.

- Let $I^+ (I^-)$ be the set of equations where x appears with positive (negative) coefficient
- Compute

$$l_x = \bigcup_{C \in I^-, D \in I^+} \beta C + \alpha D \quad \alpha x \in C, -\beta x \in D$$

- Let I_0 the set of inequations in I without x
- Replace I par $I' = I_0 \cup l_x$
- In particular, if x appears only with coefficients of the same sign in I, suppress all inequations where x appears
- When I does not contain variables any more, either we have satisfiable inequalities (like $1 \leq 2$) or an inconsistency
Fourier-Motzkin Algorithm (3)

- Complexity: double exponential
- Not incremental
- Still behaves well in practice
- Can be easily extended to deduce equations between terms
This lecture follows partly a presentation by Hans Zantema (Eindhoven University of Technology), another by Luciano Serafini (Fondazione Bruno Kessler, Trento) and another by David L. Dill (Stanford University).