Part 1: Multiple Choice

Enter your answers on the Scantron sheet.

We will not mark answers that have been entered on this sheet.

Each multiple choice question is worth 2.5 marks.

In all the questions, log(x) means log_2(x).

1. Consider the following pairs of functions f(n), g(n). For which pair the functions are such that f(n) is O(g(n)) and g(n) is O(f(n))?
 (A) f(n) = n^2, g(n) = n log(n^2)
 (B) f(n) = log n, g(n) = 10^5
 (C) f(n) = n, g(n) = 2 log n + 10n
 (D) f(n) = n^3, g(n) = 2/n^3
 (E) f(n) = 4, g(n) = log n

2. The following values are inserted, in the given order, in a hash table of size 7 that uses linear probing and hash function h(k) = k mod 7:
 4, 11, 5, 12, 6.
 In which entry of the table is the key 6 stored?
 (A) 0
 (B) 1
 (C) 4
 (D) 5
 (E) 6

3. An ordered dictionary containing 10^{12} data items of the form (key, data) needs to be stored in disk. The disk hardware allows data blocks of size b to be transferred to main memory every time that the disk is accessed. Which of the following data structures would allow the find(key) operation to be performed as efficiently as possible in the worst case?
 (A) A B-tree of order b.
 (B) A B-tree in which every node stores 10^{12}/b data items.
 (C) A B-tree in which every node stores b data items.
 (D) A B-tree in which every node has size b.
 (E) An AVL tree.

4. Let T be an AVL tree. Suppose that after adding a new data item to T, the tree becomes unbalanced. Let node z be the root of the smallest unbalance subtree in T. Let y be the child of z with larger height, and let x be the child of y with larger height. After re-balancing the tree (and, regardless of whether an LL, LR, RR, or RL rotation was performed), which node will be the root of the subtree formerly rooted at z? Assume that all keys stored in T are different.
 (A) x
 (B) y
 (C) The node among x, y, z storing the largest key.
 (D) The node among x, y, z storing the middle key.
 (E) The node among x, y, z storing the smallest key.
5. Consider the following algorithm:

Algorithm $T(r)$
Input: Root r of a proper binary tree.
if r is a leaf then return 0
else {
 $p \leftarrow T($left child of $r)$
 $q \leftarrow T($right child of $r)$
 return $p + q + 1$
}

What does the algorithm compute?
(A) The number of nodes in the tree.
(B) The number of internal nodes in the tree.
(C) The number of leaves in the tree.
(D) The height of the tree.
(E) The number of descendants of r.

6. The smallest AVL-tree of height 1 has 1 key (“smallest” here means “smallest number of keys”), the smallest AVL-tree of height 2 has 2 keys, and the smallest AVL tree of height 3 has 4 keys. How many keys does the smallest AVL-tree of height 5 have?
(A) 10
(B) 11
(C) 12
(D) 13
(E) 14

7. How many different $(2,4)$-trees containing the keys 1, 2, 3, 4, and 5 exist (each key must appears once in each one of these $(2,4)$-trees)?
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

8. Consider the following graph. Which edges, and in which order, are selected by Prim’s algorithm if it starts at vertex 1?
(A) (1,3), (3,7), (2,7), (3,6), (1,4), (3,5)
(B) (1,3), (3,7), (2,7), (7,6), (1,4), (3,5)
(C) (1,3), (2,7), (3,7), (3,5), (7,6), (1,4)
(D) (1,3), (2,7), (3,7), (1,4), (3,6), (3,5)
(E) (1,3), (3,7), (2,7), (3,5), (7,6), (1,4)
9. Consider the following graph. Which one of the following is a valid ordering of the vertices if the graph is traversed using depth first search (DFS)?
 (A) 1, 2, 6, 3, 5, 4
 (B) 4, 3, 2, 1, 5, 6
 (C) 2, 3, 1, 4, 6, 5
 (D) 5, 4, 6, 2, 3, 1
 (E) 3, 6, 1, 5, 4, 2

![Graph Image]

10. Let \(G = (V, E) \) be an undirected, connected graph with \(n \) vertices and \(m \) edges. All vertices are initially un-marked. Consider the following algorithm:

 Algorithm traverse(G, u)

 Input: Undirected, connected graph \(G \), and vertex \(u \) of \(G \).

 Mark \(u \)

 \(c ← 0 \)

 For each edge \((u, v)\) incident on \(u \) do {

 For each vertex \(w \) of \(G \) do \(c ← c + 1 \)

 if \(v \) is not marked then \(c ← c + \text{traverse}(G, v) \)

 }

 return \(c \)

Assume that \(G \) is stored in an adjacency list. What is the time complexity of the above algorithm in the worst case?

 (A) \(O(m) \)
 (B) \(O(n + m) \)
 (C) \(O(n^2) \)
 (D) \(O(nm) \)
 (E) \(O(n^3) \)

11. Consider the following graph. Assume that we use Dijkstra’s algorithm to find shortest paths from vertex \(s \) to the other vertices in the graph. In which order are the final distance labels \(u.d \) computed? (Or in other words, in which order are the shortest paths computed?)

 (A) \(s, 1, 2, 4, 3, 5 \)
 (B) \(s, 1, 2, 3, 4, 5 \)
 (C) \(s, 1, 2, 4, 5, 3 \)
 (D) \(s, 1, 4, 2, 3, 5 \)
 (E) \(s, 1, 4, 3, 2, 5 \)
12. Let \(G = (V, E) \) be an undirected graph. We are interested in selecting a data structure for representing \(G \) that allows us to implement the operations `areAdjacent(u,v)` and `incidentEdges(u)`. Let \(n \) be the number of vertices and \(m \) be the number of edges. Which of the following is true?

(A) An edge list (an array storing all edges of the graph) allows us to perform `incidentEdges(u)` in \(O(\text{degree}(u)) \) time and `areAdjacent(u,v)` in \(O(1) \) time.

(B) With an adjacency list `areAdjacent(u,v)` can be implemented in \(O(1) \) time and `incidentEdges(u)` in \(O(\text{degree}(u)) \) time.

(C) An adjacency matrix allows us to implement both operations in \(O(1) \) time.

(D) An adjacency list allows us to implement both operations in \(O(1) \) time.

(E) An adjacency matrix can implement `areAdjacent(u,v)` in \(O(1) \) time and `incidentEdges(u,v)` in \(O(n) \) time.

13. Consider the following algorithm.

\[
\text{Algorithm Sort}(A, n)
\]

\textbf{Input:} Array \(A \) containing \(n \) different integer values.

\textbf{Out:} Array \(A \) sorted in increasing order of value.

\[
\text{for } i \leftarrow n - 1 \text{ downto } 1 \text{ do } \{ \\
\hspace{1cm} m \leftarrow i \\
\hspace{1cm} (*) \\
\hspace{1cm} t \leftarrow A[m]; A[m] \leftarrow A[i]; A[i] \leftarrow t \text{ // Swap } A[i] \text{ and } A[m] \\
\}
\]

\text{return } A

Which of the following instructions must be inserted at the point marked (*) so that the algorithm correctly sorts the values stored in \(A \) in increasing order of value?

(A) \text{for } j \leftarrow 0 \text{ to } i - 1 \text{ do } \\
\hspace{1cm} \text{if } A[j] > A[m] \text{ then } m \leftarrow j

(B) \text{for } j \leftarrow i + 1 \text{ to } n - 1 \text{ do } \\
\hspace{1cm} \text{if } A[j] > A[m] \text{ then } m \leftarrow j

(C) \text{for } j \leftarrow 0 \text{ to } n - 1 \text{ do } \\
\hspace{1cm} \text{if } A[j] > A[m] \text{ then } m \leftarrow j

(D) \text{for } j \leftarrow 0 \text{ to } i - 1 \text{ do } \\
\hspace{1cm} \text{if } A[j] < A[m] \text{ then } m \leftarrow j

(E) \text{for } j \leftarrow 0 \text{ to } n - 1 \text{ do } \\
\hspace{1cm} \text{if } A[j] < A[m] \text{ then } m \leftarrow j
14. (12 marks) Let $G = (V, E)$ be an undirected graph in which every vertex is labelled either “free” or “toll”. Write an algorithm that given two “free” vertices s and t it decides whether there is at least one path p from s to t that goes only through “free” vertices. If such a path exists, the algorithm must return the value true, otherwise it must return the value false. For example, for the following graph (the “free” vertices are shaded: 0, 1, 3, 5, 6) if $s = 0$ and $t = 6$ the algorithm must return the value true (as paths $\langle 0, 1, 6 \rangle$ and $\langle 0, 3, 1, 6 \rangle$ are as required); for $s = 1, t = 6$, the algorithm must also return true (as path $\langle 1, 6 \rangle$ only goes through “free” vertices); however, for $s = 0, t = 5$, the algorithm must return false (as the only paths from vertex 0 to 5 must go through “toll” vertices).

15. (4 marks) Compute the time complexity of your algorithm for the previous question in the worst case, assuming that the graph is stored in an adjacency list. Explain how you computed the time complexity and give the order of the time complexity.
16. (12 marks) Consider two arrays A and B, each storing n different integer values. All values in A and B are different. In both arrays the values are sorted in increasing order. Write an algorithm that merges A and B and stores their values in an array C in such a way that the first n values in C are sorted in increasing order and the last n values are sorted in decreasing order. For example, if A and B are as follows:

$A = \begin{bmatrix} 3 & 6 & 8 & 13 & 19 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$

$B = \begin{bmatrix} 1 & 4 & 9 & 11 & 17 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$

Then array C must be this:

$C = \begin{bmatrix} 1 & 3 & 4 & 6 & 8 & 19 & 17 & 13 & 11 & 9 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$

You cannot use any auxiliary data structures and you must write the complete algorithm (you cannot invoke algorithms for which you do not provide pseudocode).
17. (4 marks) Compute the time complexity of your algorithm for the previous question in the worst case. Explain how you computed the time complexity and give the order of the time complexity.

18. (5.5 marks) Write a recurrence equation expressing the time complexity of the following algorithm. Explain your answer. Assume that n is a power of 2.

Algorithm $\text{rec}(n)$

Input: Integer value $n \geq 0$

if $n = 0$ then return 1
else {
 $c \leftarrow 0$
 For $i \leftarrow 0$ to $n - 1$ do $c \leftarrow c + i$
 $c \leftarrow c + \text{rec}(n/2)$
 return c
}
For the following 2 questions you can use any of the algorithms studied in class. You do not have to write full descriptions of the algorithms. Just indicate which algorithm you would use, and which changes you need to make to the algorithm to answer each question. Indicate also how to pre-process the input for the algorithm. For example, if the question is: given a road map with distances between cities, find a shortest way of driving from city A to city B; your answer might be: build a graph in which every node is a city and an edge represents a road. The length of an edge is the length of the corresponding road. Use Dijkstra’s algorithm to find a shortest path from A to B. This is a shortest route to drive from A to B.

19. (5 marks) There are \(n \) small islands in a lake and it is desired to build bridges to connect them so that each island can be reached from any other island via one or more bridges. The islands are numbered from 0 to \(n - 1 \). The cost of constructing a bridge between islands \(i \) and \(j \) is \(c(i, j) \). Describe an algorithm that determines which bridges must be built so that the total construction cost is minimum. For example, for the set of islands shown below, an optimum solution is the set of bridges in bold and it has total cost 16.

![Islands Diagram]

20. (5 marks) Let \(G = (V, E) \) be a graph representing a communication network in which the edges are labelled either slow or fast. Describe an algorithm for finding a path from vertex \(s \) to vertex \(t \) with the smallest number of slow edges (it does not matter how many fast edges there are in the path as long as the number of slow edges is as small as possible).
21. (5 marks) Consider the following AVL tree. Insert the key 11 into this tree and re-balance if needed. You must use the algorithms discussed in class, and if re-balancing is needed you must indicate the kind of rotation performed. Show all intermediate trees.
22. (5 marks) Consider the following AVL tree. Remove the key 6 and re-balance the tree if needed. You must use the algorithms discussed in class, and if re-balancing is needed you must indicate the kind of rotation performed. Show all intermediate trees.

![AVL tree diagram]
23. (5 marks) Insert the key 38 in the following (2,4)-tree. You must use the algorithm discussed in class for inserting information in a (2,4)-tree. Show all intermediate trees and give the name of the operation performed in each intermediate tree.
24. (5 marks) Delete the value 19 from the following (2,4)-tree. You must use the algorithm discussed in class for removing information from a (2,4)-tree. Show all intermediate trees and give the name of the operation performed on each intermediate tree.