(2,4) Trees
Multi-Way Search Trees

A multi-way search tree is an ordered tree such that:

- Each internal node has at least two children and stores \(d - 1 \) key-element items \((k_i, o_i) \), where \(d \) is the number of children.
- For a node with children \(v_1, v_2, \ldots, v_d \) storing keys \(k_1, k_2, \ldots, k_{d-1} \):
 - keys in the subtree of \(v_1 \) are less than \(k_1 \)
 - keys in the subtree of \(v_i \) are between \(k_{i-1} \) and \(k_i \) \((i = 2, \ldots, d - 1)\)
 - keys in the subtree of \(v_d \) are greater than \(k_{d-1} \)
- The leaves store no items and serve as placeholders.
Multi-Way Inorder Traversal

We can extend the notion of inorder traversal from binary trees to multi-way search trees.

Namely, we visit item \((k_i, o_i)\) of node \(v\) between the recursive traversals of the subtrees of \(v\) rooted at children \(v_i\) and \(v_{i+1}\).

An inorder traversal of a multi-way search tree visits the keys in increasing order.
Multi-Way Searching

- Similar to search in a binary search tree
- Each internal node with children v_1, v_2, \ldots, v_d and keys k_1, k_2, \ldots, k_d:
 - $k = k_i (i = 1, \ldots, d - 1)$: the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i (i = 2, \ldots, d - 1)$: we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

![Diagram](image-url)
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties:
- **Node-Size Property**: every internal node has at most four children
- **Depth Property**: all the external nodes have the same depth

Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node.
Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height $O(\log n)$

Proof:
- Let h be the height of a (2,4) tree with n items
- Since there are at least 2^i items at depth $i = 0, \ldots, h - 1$ and no items at depth h, we have
 $$n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1$$
- Thus, $h \leq \log (n + 1)$

Searching in a (2,4) tree with n items takes $O(\log n)$ time
Insertion

We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\).

- We preserve the depth property but
- We may cause an overflow (i.e., node \(v\) may become a 5-node)

Example: inserting key 30 causes an overflow

```
  10 15 24
 /  \  /  \\
2 8 12 18
|     |   |
2 8 12 30 32 35
```

© 2004 Goodrich, Tamassia

(2,4) Trees
Overflow and Split

We handle an overflow at a 5-node \(v \) with a split operation:

- let \(v_1 \ldots v_5 \) be the children of \(v \) and \(k_1 \ldots k_4 \) be the keys of \(v \)
- node \(v \) is replaced nodes \(v' \) and \(v'' \)
 - \(v' \) is a 3-node with keys \(k_1 k_2 \) and children \(v_1 v_2 v_3 \)
 - \(v'' \) is a 2-node with key \(k_4 \) and children \(v_4 v_5 \)
- key \(k_3 \) is inserted into the parent \(u \) of \(v \) (a new root may be created)

The overflow may propagate to the parent node \(u \)
Let T be a (2,4) tree with n items

- Tree T has $O(\log n)$ height
- Step 1 takes $O(\log n)$ time because we visit $O(\log n)$ nodes
- Step 2 takes $O(1)$ time
- Step 3 takes $O(\log n)$ time because each split takes $O(1)$ time and we perform $O(\log n)$ splits

Thus, an insertion in a (2,4) tree takes $O(\log n)$ time

Algorithm $\text{insert}(k, o)$

1. We search for key k to locate the insertion node v

2. We add the new entry (k, o) at node v

3. *while* $\text{overflow}(v)$

 if $\text{isRoot}(v)$

 create a new empty root above v

 $v \leftarrow \text{split}(v)$
Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children.
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry.
- Example: to delete key 24, we replace it with 27 (inorder successor).
Underflow and Fusion

- Deleting an entry from a node \(v \) may cause an underflow, where node \(v \) becomes a 1-node with one child and no keys.
- To handle an underflow at node \(v \) with parent \(u \), we consider two cases:
 - **Case 1:** the adjacent siblings of \(v \) are 2-nodes
 - **Fusion operation:** we merge \(v \) with an adjacent sibling \(w \) and move an entry from \(u \) to the merged node \(v' \).
 - After a fusion, the underflow may propagate to the parent \(u \).
Underflow and Transfer

To handle an underflow at node \(v \) with parent \(u \), we consider two cases

- **Case 2:** an adjacent sibling \(w \) of \(v \) is a 3-node or a 4-node
 - **Transfer operation:**
 1. we move a child of \(w \) to \(v \)
 2. we move an item from \(u \) to \(v \)
 3. we move an item from \(w \) to \(u \)
 - After a transfer, no underflow occurs
Analysis of Deletion

Let T be a $(2,4)$ tree with n items
- Tree T has $O(\log n)$ height

In a deletion operation
- We visit $O(\log n)$ nodes to locate the node from which to delete the entry
- We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
- Each fusion and transfer takes $O(1)$ time

Thus, deleting an item from a $(2,4)$ tree takes $O(\log n)$ time
Implementing a Dictionary

Comparison of efficient dictionary implementations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>1 expected</td>
<td>1 expected</td>
<td>1 expected</td>
<td>no ordered dictionary methods, simple to implement</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\log n$ worst case</td>
<td>$\log n$ worst case</td>
<td>$\log n$ worst case</td>
<td>complex to implement</td>
</tr>
<tr>
<td>(2,4) Tree</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>complex to implement</td>
</tr>
</tbody>
</table>