(2,4) Trees
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties:

- **Node-Size Property**: every internal node has at most four children
- **Depth Property**: all the external nodes have the same depth

Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node.
Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height $O(\log n)$

Proof:
- Let h be the height of a (2,4) tree with n items
- Since there are at least 2^i items at depth $i = 0, \ldots, h - 1$ and no items at depth h, we have
 $$n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1$$
- Thus, $h \leq \log (n + 1)$

Searching in a (2,4) tree with n items takes $O(\log n)$ time
Insertion

- We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\)
 - We preserve the depth property but
 - We may cause an **overflow** (i.e., node \(v\) may become a 5-node)
- Example: inserting key 30 causes an overflow

![Diagram of insertion process]

© 2004 Goodrich, Tamassia

(2,4) Trees
Overflow and Split

- We handle an overflow at a 5-node \(v \) with a split operation:
 - let \(v_1 \ldots v_5 \) be the children of \(v \) and \(k_1 \ldots k_4 \) be the keys of \(v \)
 - node \(v \) is replaced nodes \(v' \) and \(v'' \)
 - \(v' \) is a 3-node with keys \(k_1 k_2 \) and children \(v_1 v_2 v_3 \)
 - \(v'' \) is a 2-node with key \(k_4 \) and children \(v_4 v_5 \)
 - key \(k_3 \) is inserted into the parent \(u \) of \(v \) (a new root may be created)
- The overflow may propagate to the parent node \(u \)
Algorithm \textit{insert}(k, o)

1. We search for key \(k \) to locate the insertion node \(v \)

2. We add the new entry \((k, o)\) at node \(v \)

3. while \textit{overflow}(v)

 if \textit{is Root}(v)

 create a new empty root above \(v \)

 \(v \leftarrow \textit{split}(v) \)

Let \(T \) be a (2,4) tree with \(n \) items

- Tree \(T \) has \(O(\log n) \) height
- Step 1 takes \(O(\log n) \) time because we visit \(O(\log n) \) nodes
- Step 2 takes \(O(1) \) time
- Step 3 takes \(O(\log n) \) time because each split takes \(O(1) \) time and we perform \(O(\log n) \) splits

Thus, an insertion in a (2,4) tree takes \(O(\log n) \) time
Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children.
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry.
- Example: to delete key 24, we replace it with 27 (inorder successor).

![Binary Search Tree example](attachment:binary_search_tree.png)

© 2004 Goodrich, Tamassia
Underflow and Fusion

Deleting an entry from a node \(v \) may cause an underflow, where node \(v \) becomes a 1-node with one child and no keys.

To handle an underflow at node \(v \) with parent \(u \), we consider two cases:

Case 1: the adjacent siblings of \(v \) are 2-nodes

- Fusion operation: we merge \(v \) with an adjacent sibling \(w \) and move an entry from \(u \) to the merged node \(v' \).
- After a fusion, the underflow may propagate to the parent \(u \).
Underflow and Transfer

To handle an underflow at node v with parent u, we consider two cases:

- **Case 2:** an adjacent sibling w of v is a 3-node or a 4-node

 - **Transfer operation:**
 1. we move a child of w to v
 2. we move an item from u to v
 3. we move an item from w to u

 - After a transfer, no underflow occurs
Analysis of Deletion

Let T be a (2,4) tree with n items
- Tree T has $O(\log n)$ height

In a deletion operation
- We visit $O(\log n)$ nodes to locate the node from which to delete the entry
- We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
- Each fusion and transfer takes $O(1)$ time

Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time
Implementing a Dictionary

Comparison of efficient dictionary implementations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>1 expected</td>
<td>1 expected</td>
<td>1 expected</td>
<td>no ordered dictionary methods</td>
</tr>
<tr>
<td>AVL Tree</td>
<td>$\log n$ worst case</td>
<td>$\log n$ worst case</td>
<td>$\log n$ worst case</td>
<td>complex to implement</td>
</tr>
<tr>
<td>(2,4) Tree</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>complex to implement</td>
</tr>
</tbody>
</table>