A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search tree with the following properties:

- **Node-Size Property**: every internal node has 2, 3, or 4 children.
- **Depth Property**: all the leaves are in the same level.

Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node.
(2,4) Tree?
(2,4) Tree?
Height of a (2,4) Tree

- **Theorem:** A (2,4) tree storing n items has height $O(\log n)$

 Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth $i = 0, \ldots, h - 1$ and no items at depth h, we have
 $$n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1$$
 - Thus, $h \leq \log (n + 1)$

- Searching in a (2,4) tree with n items takes $O(\log n)$ time
Insertion

- We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\)
 - We preserve the depth property but
 - We may cause an overflow (i.e., node \(v\) may become a 5-node)
- Example: inserting key 30 causes an overflow
Overflow and Split

We handle an overflow at a 5-node \(v \) with a split operation:
- let \(v_1 \ldots v_5 \) be the children of \(v \) and \(k_1 \ldots k_4 \) be the keys of \(v \)
- node \(v \) is replaced with nodes \(v' \) and \(v'' \)
 - \(v' \) is a 3-node with keys \(k_1 \) \(k_2 \) and children \(v_1 \) \(v_2 \) \(v_3 \)
 - \(v'' \) is a 2-node with key \(k_4 \) and children \(v_4 \) \(v_5 \)
- key \(k_3 \) is inserted into the parent \(u \) of \(v \) (a new root may be created)

The overflow may propagate to the parent node \(u \)
Algorithm \textit{put} \((r,k,o)\)

\textbf{In:} Root \(r\) of a (2,4) tree, data item \((k,o)\)

\textbf{Out:} \{Insert data item \((k,o)\) in (2,4) tree

Search for \(k\) to find the lowest insertion internal node \(v\)

Add the new data item \((k,o)\) at node \(v\)

\textbf{while} node \(v\) overflows \textbf{do} \{

\textbf{if} \(v\) is the root \textbf{then}

Create a new empty root and set as parent of \(v\)

Split \(v\) around the second key \(k'\), move \(k'\) to parent, and update parent’s children

\(v \leftarrow\) parent of \(v\)

\}

(2,4) Trees
Algorithm *put* \((r, k, o)\)

In: Root \(r\) of a (2,4) tree, data item \((k, o)\)

Out: {Insert data item \((k, o)\) in (2,4) tree}

Search for \(k\) to find the lowest insertion internal node \(v\)

Add the new data item \((k, o)\) at node \(v\)

while node \(v\) overflows do {
 if \(v\) is the root then
 Create a new empty root and set as parent of \(v\)
 Split \(v\) around the second key \(k'\), move \(k'\) to parent, and update parent’s children
 \(v \leftarrow\) parent of \(v\)
}

Time complexity of put is \(O(\log n)\)
Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children.
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry.
- Example: to delete key 24, we replace it with 27 (inorder successor).

```
2   8
12  18
27  32  35
10  15
2   8
12  18
32  35
```

(2,4) Trees
Underflow and Fusion

Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys.

To handle an underflow at node v with parent u, we consider two cases.

Case 1: the adjacent siblings of v are 2-nodes
- Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
- After a fusion, the underflow may propagate to the parent u
Underflow and Transfer

To handle an underflow at node v with parent u, we consider two cases.

- **Case 2:** an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 1. we move a child of w to v
 2. we move an item from u to v
 3. we move an item from w to u
 - After a transfer, no underflow occurs.

![Diagram of (2,4) Trees]
Algorithm \textit{remove}(r,k)

\textbf{In:} Root \textit{r} of a (2,4) tree, key \textit{k}

\textbf{Out:} \{remove data item with key \textit{k} from the tree\}

Find the node \textit{v} storing key \textit{k}

Remove \((\textit{k}, \textit{o})\) from \textit{v} replacing it with successor if needed

\textbf{while} node \textit{v} underflows \textbf{do} {

\hspace{1em} \textbf{if} \textit{v} is the root then

\hspace{2em} make the first child of \textit{v} the new root

\hspace{1em} \textbf{else if} a sibling has at least 2 keys \textbf{then}

\hspace{2em} perform a transfer operation

\hspace{1em} \textbf{else} {

\hspace{3em} perform a fusion operation

\hspace{2em} \textit{v} \leftarrow \text{parent of } \textit{v}

\hspace{1em} \}

\}

(2,4) Trees
Algorithm `remove(r,k)`

In: Root r of a (2,4) tree, key k

Out: \{remove data item with key k from the tree\}

1. Find the node v storing key k \(\text{O}(\log n)\)
2. Remove \((k, o)\) from v replacing it with successor if needed \(\text{O}(\log n)\)

while node v *underflows* **do** \{

1. **if** v is the root **then**
 1. make the first child of v the new root \(\text{O}(\log n)\)
2. **else if** a sibling has at least 2 keys **then**
 1. perform a transfer operation \(\text{O}(1)\)
3. **else**
 1. perform a fusion operation
 2. $v \leftarrow$ parent of v

**}\} Time complexity of remove: $O(\log n)$