Depth-First Search

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G

- A spanning subgraph of G is a subgraph that contains all the vertices of G
Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.
Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

 This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles

- The connected components of a forest are trees
Spanning Trees andForests

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.
Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph.

- A DFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Can determine whether G is connected.
 - Can compute the connected components of G.
 - Can compute a spanning forest of G.

- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices.
 - Find a cycle in the graph.
DFS Algorithm from a Vertex

Algorithm DFS(u)

In: Vertex u of a graph G

Out: {DFS traversal of G starting at u}

Mark (u)

For each edge (u,v) incident on u **do**

if (u,v) is not labelled **then**

if v is not marked **then** {

Label (u,v) as “discovery edge”

DFS(v)

}

else label (u,v) as “back edge”
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **back edge**

Diagram:

1. Starting vertex A
2. Visiting A, marking it as visited
3. Exploring unexplored edges from A to B, C, D, and E
4. Discovering edges from B, C, D, and E
5. Back edge from D to A
6. Exploring further from unexplored vertices B, C, D, and E
Example (cont.)
DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
Properties of DFS

Property 1

$DFS(G, v)$ visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by $DFS(G, v)$ form a spanning tree of the connected component of v called a DFS tree
Analysis of DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once initialized as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once initialized as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure and it runs in $O(n^2)$ time if the graph is stored in an adjacency matrix.
Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices \(u \) and \(z \).
- We call \(DFS(u) \) with \(u \) as the start vertex.
- We use a stack \(S \) to keep track of the path between the start vertex and the current vertex.
- As soon as destination vertex \(z \) is encountered, we return the path as the contents of the stack.

Algorithm \(pathDFS(G, v, z) \)

\[
\begin{align*}
Mark(v) \\
S.push(v)
\end{align*}
\]

if \(v = z \)

return true

for all edges \((v, w)\) incident on \(v \) do

if \(w \) is not marked then

if \(pathDFS(G, w, z) \) then

return true

\[
S.pop(v)
\]

return false