Minimum Spanning Trees
Minimum Spanning Trees

Spanning subgraph
- Subgraph of a graph G containing all the vertices of G

Spanning tree
- Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight

Applications
- Communications networks
- Transportation networks
Prim’s Algorithm

Algorithm Prim (G,s)

In: weighted connected graph G and vertex s

Out: {compute a minimum spanning tree}

for each vertex u of G **do** {
 u.d ← ∞ // distance from vertex s to vertex u
 u.p ← null // predecessor or parent of vertex u in a shortest paths tree
 u.marked ← false
}

s.d ← 0 // Distance from s to itself is 0

for i ← 0 **to** n-1 **do** {
 min ← ∞ // Find unmarked vertex u with minimum distance to s
 for each vertex v of G **do**
 if (v.marked = false) and (v.d < min) **then** {
 min ← v.d
 u ← v
 }
 u.marked ← true // Relax all edges incident on vertex u
 for each edge (u,v) incident on u **do**
 if length(u,v) < v.d **then** {
 v.d ← length(u,v)
 v.p ← u
 }
}
Example
Example (contd.)
Analysis of Prim’s Algorithm

Using an adjacency matrix:

\[f(n,m) = c_1n + \sum_{u \in G}(c_4+c_2n+c_3n) = c_1n + c_4n + c_2n^2 + c_3n^2 \text{ is } O(n^2) \]

Using an adjacency list:

\[f(n,m) = c_1n + \sum_{u \in G}(c_4+c_2n+c_3\text{deg}(u)) = c_1n + c_4n + c_2n^2 + 2c_3m \text{ is } O(n^2) \]