Merge Sort

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

7 → 7 2 → 2

9 | 4 → 4 9

9 → 9 4 → 4
Outline and Reading

- Divide-and-conquer paradigm (§4.1.1)
- Merge-sort (§4.1.1)
 - Algorithm
 - Merging two sorted sequences
 - Merge-sort tree
 - Execution example
 - Analysis
- Generic merging and set operations (§4.2.1)
- Summary of sorting algorithms (§4.2.1)
Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

- **Divide:** divide the input data \(S \) in two disjoint subsets \(S_1 \) and \(S_2 \)
- **Recur:** solve the subproblems associated with \(S_1 \) and \(S_2 \)
- **Conquer:** combine the solutions for \(S_1 \) and \(S_2 \) into a solution for \(S \)

The base case for the recursion are subproblems of size 0 or 1

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
Merge-Sort

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide:** partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Recur:** recursively sort S_1 and S_2
- **Conquer:** merge S_1 and S_2 into a unique sorted sequence

Algorithm $mergeSort(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.size() > 1$

$(S_1, S_2) \leftarrow partition(S, n/2)$

$mergeSort(S_1, C)$

$mergeSort(S_2, C)$

$S \leftarrow merge(S_1, S_2)$
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences \(A \) and \(B \) into a sorted sequence \(S \) containing the union of the elements of \(A \) and \(B \).

- Merging two sorted sequences, each with \(n/2 \) elements and implemented by means of a doubly linked list, takes \(O(n) \) time.

Algorithm \(\text{merge}(A, B) \)

Input sequences \(A \) and \(B \) with \(n/2 \) elements each

Output sorted sequence of \(A \cup B \)

\[
S \leftarrow \text{empty sequence}
\]

while \(\neg A.\text{isEmpty()} \land \neg B.\text{isEmpty()} \)

if \(A.\text{first().element()} < B.\text{first().element()} \)

\(S.\text{insertLast}(A.\text{remove(A.first())}) \)

else

\(S.\text{insertLast}(B.\text{remove(B.first())}) \)

while \(\neg A.\text{isEmpty()} \)

\(S.\text{insertLast}(A.\text{remove(A.first())}) \)

while \(\neg B.\text{isEmpty()} \)

\(S.\text{insertLast}(B.\text{remove(B.first())}) \)

return \(S \)
Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1
Execution Example

Partition

```
7 2 9 4 | 3 8 6 1
```

2/28/2002 1:16 AM Merge Sort 7
Execution Example (cont.)

Recursive call, partition

7 2 9 4 | 3 8 6 1

1 2 3 4 6 7 8 9
Execution Example (cont.)

 Recursive call, partition

```
7 2 9 4 3 8 6 1
```

```
7 2 | 9 4
```

```
7 | 2
```

```
7 2 9 4
```

```
3 8 6 1
```

2/28/2002 1:16 AM
Execution Example (cont.)

Recursive call, base case

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
7 | 2
```

```
7 \rightarrow 7
```

```
7 \rightarrow 2
```

```
7 \rightarrow 7
```
Execution Example (cont.)

Recursive call, base case

```
[7 2 9 4 | 3 8 6 1]
```

```
[7 2 | 9 4]
```

```
[7 | 2]
```

```
7 → 7
```

```
7 → 7
```

```
7 → 7
```

```
7 → 7
```

```
1 2 3 4 6 7 8 9
```
Execution Example (cont.)

Merge Sort

7 2 9 4 | 3 8 6 1

7 2 9 4

7 2 → 2 7

7 → 7 2 → 2

Merge Sort

12
Execution Example (cont.)

Recursive call, ..., base case, merge
Execution Example (cont.)

Merge Sort

2/28/2002 1:16 AM
Execution Example (cont.)

Recursive call, ..., merge, merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4 → 2 4 7 9
```

```
7 | 2 → 2 7
```

```
9 4 → 4 9
```

```
9 → 9
```

```
4 → 4
```

```
3 8 → 3 8
```

```
3 → 3
```

```
8 → 8
```

```
6 1 → 1 6
```

```
6 → 6
```

```
1 → 1
```

2/28/2002 1:16 AM
Execution Example (cont.)

Merge Sort

```
7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9
```

```
7 2 9 4 → 2 4 7 9
3 8 6 1 → 1 3 8 6
```

```
7 2 → 2 7
9 4 → 4 9
3 8 → 3 8
6 1 → 1 6
```

```
7 → 7
2 → 2
9 → 9
4 → 4
3 → 3
8 → 8
6 → 6
1 → 1
```
Analysis of Merge-Sort

The height h of the merge-sort tree is $O(\log n)$
- at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is $O(n)$
- we partition and merge 2^i sequences of size $n/2^i$
- we make 2^{i+1} recursive calls

Thus, the total running time of merge-sort is $O(n \log n)$
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for small data sets (< 1K)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for small data sets (< 1K)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for huge data sets (> 1M)</td>
</tr>
</tbody>
</table>