Multi-Way Search Trees
Multi-Way Search Trees

A multi-way search tree is an ordered tree such that

- Each internal node has at least two children and stores $d - 1$ key-element items (k_i, o_i), where d is the number of children.
- For a node with children $v_1, v_2 \ldots v_d$ storing keys $k_1, k_2 \ldots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i ($i = 2, \ldots, d - 1$)
 - keys in the subtree of v_d are greater than k_{d-1}
- The leaves store no items and serve as placeholder.
Multi-Way Inorder Traversal

We can extend the notion of inorder traversal from binary trees to multi-way search trees.

Namely, we visit item \((k_i, o_i)\) of node \(v\) between the recursive traversals of the subtrees of \(v\) rooted at children \(v_i\) and \(v_i + 1\).

An inorder traversal of a multi-way search tree visits the keys in increasing order.
Multi-Way Searching

- Similar to search in a binary search tree
- A each internal node with children $v_1 v_2 \ldots v_d$ and keys $k_1 k_2 \ldots k_{d-1}$
 - $k = k_i (i = 1, \ldots, d - 1)$: the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i (i = 2, \ldots, d - 1)$: we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30