Breadth-First Search
Breadth-First Search (§ 12.3.3)

- **Breadth-first search (BFS)** is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.
- BFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time.
- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices.
 - Find a simple cycle, if there is one.
BFS Algorithm

The algorithm uses a mechanism for setting and getting “labels” of vertices and edges

Algorithm $BFS(G)$

Input graph G

Output labeling of the edges and partition of the vertices of G

for all $u \in G.\text{vertices}()$

setLabel(u, UNEXPLORED)

for all $e \in G.\text{edges}()$

setLabel(e, UNEXPLORED)

for all $v \in G.\text{vertices}()$

if $\text{getLabel}(v) = \text{UNEXPLORED}$

$BFS(G, v)$

Algorithm $BFS(G, s)$

$L_0 \leftarrow \text{new empty sequence}$

$L_0.\text{insertLast}(s)$

setLabel(s, VISITED)

$i \leftarrow 0$

while $\lnot L_i.\text{isEmpty}()$

$L_{i+1} \leftarrow \text{new empty sequence}$

for all $v \in L_i.\text{elements}()$

for all $e \in G.\text{incidentEdges}(v)$

if $\text{getLabel}(e) = \text{UNEXPLORED}$

$w \leftarrow \text{opposite}(v,e)$

if $\text{getLabel}(w) = \text{UNEXPLORED}$

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

$L_{i+1}.\text{insertLast}(w)$

else

setLabel(e, CROSS)

$i \leftarrow i + 1$
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**
Example (cont.)
Example (cont.)
Properties

Notation

G_s: connected component of s

Property 1

$BFS(G, s)$ visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by $BFS(G, s)$ form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i
 - The path of T_s from s to v has i edges
 - Every path from s to v in G_s has at least i edges
Analysis

Setting/getting a vertex/edge label takes $O(1)$ time

Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED

Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence L_i

Method incidentEdges is called once for each vertex

BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
- Recall that $\sum_v \deg(v) = 2m$
Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

DFS

![DFS Diagram]

BFS

![BFS Diagram]
DFS vs. BFS (cont.)

Back edge \((v,w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v,w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges