Breadth-First Search
Breadth-First Search (§ 14.3.3)

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Can determine whether G is connected.
 - Can compute the connected components.
 - Computes a spanning forest of G.
- BFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices.
 - Find a simple cycle, if there is one.
Breadth-First Search

BFS Algorithm

- The algorithm uses a mechanism for setting and getting “labels” of vertices and edges

Algorithm $BFS(G)$

Input graph G

Output labeling of the edges and partition of the vertices of G

for all $u \in G.\text{vertices}()$

setLabel(u, UNEXPLORED)

for all $e \in G.\text{edges}()$

setLabel(e, UNEXPLORED)

for all $v \in G.\text{vertices}()$

if $\text{getLabel}(v) = \text{UNEXPLORED}$

$BFS(G, v)$
Example

- **A**
 - unexplored vertex
 - visited vertex

- **unexplored edge**
- **discovery edge**
- **cross edge**

© 2004 Goodrich, Tamassia
Example (cont.)
Example (cont.)

Breadth-First Search
Properties

Notation

\(G_s \): connected component of \(s \)

Property 1

\(\text{BFS}(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

The discovery edges labeled by \(\text{BFS}(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

For each vertex \(v \) in level \(i \)
- The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges

© 2004 Goodrich, Tamassia

Breadth-First Search
Analysis

- Setting/getting a vertex/edge label takes \(O(1) \) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into the queue
- Method incidentEdges is called once for each vertex
- BFS runs in \(O(n + m) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\sum_v \deg(v) = 2m \)
Applications

We can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

DFS

BFS
DFS vs. BFS (cont.)

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges