Lecture 13: Graphs
Outline

- New data structure: Graphs
 - used to model a variety of problems
 - different graph than “plotting a function graph”
- Definitions
 - lots of terminology with more to come in later lectures
 - even more terminology exists, but not covered in this course
- Basic Properties
- Graph ADT
Graphs: Motivation

- Graph is a natural representation to visualize flight roots.
 - Each city is represented with a node.
 - Can label each node with a three letter airport code.
 - Two cities with a direct flight between them are connected with an edge.
 - Can label edge with the mileage of the route, time to fly, etc.
Graphs: Motivation

- A way to think about graphs:
 - Nodes specify some entities we are interested in
 - Edges specify the relationships between these entities
Graphs: Motivation

- Can answer many interesting questions using graphs
 - Can we reach one city from another city?
 - What is the route with minimum number of connections between 2 cities?
 - What is the minimum mileage route between 2 cities?
- Many interesting questions can be answered efficiently, but for some there is no hope of efficient answer
A graph is a pair \((V, E)\), where
- \(V\) is a collection of nodes, or vertices
- \(E\) is a collection of pairs of vertices, called edges

In this example
- \(V = \{a, b, c, d, f\}\)
- \(E = \{(a, c), (b, c), (c, f), (b, d), (d, f), (c, d)\}\)
Two Edge Types

- Directed edge
 - ordered pair of vertices \((u, v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight
 - \((v, u)\) and \((u, v)\) are two different edges

- Undirected edge
 - unordered pair of vertices \((u, v)\)
 - e.g., a network of friends
 - If \textit{Sam} is a friend of \textit{Bob}, then \textit{Bob} is also a friend of \textit{Sam}
 - \((u, v)\) and is \((v, u)\) the same edge
Graph Types

- Directed graph
 - all the edges are directed
 - e.g., route network

- Undirected graph
 - all edges are undirected
 - “friends” network
Applications

- Transportation networks
 - City map
 - Highway network
 - Flight network

- Computer networks
 - Local area network
 - Internet
 - Web

- Computer Vision
 - Image pixels are graph nodes, neighboring pixels connected by edges
Graph Terminology

- **End vertices** (or **endpoints**) of an edge are 2 vertices that joined by an edge
 - u and v are the endpoints of (u,v)
- Edge is **incident** on a vertex if the vertex is one of this edge’s endpoints
 - (v,w) is incident on w
- 2 vertices are **adjacent** if there is an edge between them
 - v and x are adjacent
- **Degree** of a vertex is the number of adjacent vertices
 - x has degree 4
More Graph Terminology

- **Parallel** edges are edges that
 - undirected graph: have the same endpoints
 - directed graph: same origin and destination
 - There are 2 parallel edges between x and z

- **Self-loop** is an edge whose endpoints coincide
 - (z,z) is a self-loop

- **Simple** graph: no parallel edges and no self-loops

- We will deal almost exclusively with simple graphs
Even More Terminology

- **Path**
 - sequence of vertices such that consecutive vertices are adjacent
 - Example path: U, W, X, Y, W, V

- **Simple path**
 - path such that all its vertices are distinct
 - Example: V, X, Z
Yet Even More Terminology

- **Cycle**
 - Path on which the first vertex is equal to the last vertex and

- **Simple cycle**
 - cycle such that all its vertices, except the first and the last one, are distinct
 - No repeating edges on the path
 - Example: V, X, Y, W, U, V
Yet Even More Terminology Still

- **Connected** graph
 - Graph where any two vertices are connected by some path

- **Subgraph** of a graph \((V,E)\)
 - \((V',E')\) s.t. \(V'\) is a subset of \(V\), \(E'\) is a subset of \(E\), and both endpoints of edges in \(E'\) are in \(V'\)
 - A **spanning** subgraph of \(G\) is a subgraph that contains all vertices of \(G\)
A connected component G' of a graph G is a maximal connected subgraph of G

- **Connected**: There is a path between any 2 vertices in the connected component G'
- **Maximal**: no way to add into G' any vertices and/or edges of G which are not currently in G' in such a way that the resulting subgraph is connected
Connected Component

Graph G:

not a connected component in thick red lines

added a new vertex c and edge (b, c), and still connected
Connected Component

Graph G

not a connected component in thick red lines

added a new edge (a, c), and still connected
Connected Components
Almost the Last Terminology Slide

- **Tree** graph is any *connected* graph without cycles
 - this is different from the “rooted” trees studied previously
 - to make a distinction from “rooted” trees, sometimes say *free tree*

- **Forest** graph is any graph without cycles
 - connected components of a forest are trees
The Last Terminology Slide

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.
 - In not connected graph we have spanning forest.
 - In connected graph we can have a spanning tree.
Properties

Let

- \(m \) = number of edges
- \(\text{deg}(v) \) = degree of vertex \(v \) = number of adjacent vertices of \(v \)

Property 1: \(\sum_v \text{deg}(v) = 2m \)

Proof:

- Every edge \((w,u)\) has 2 end points: \(w \) and \(u \)
- Endpoint \(w \) contributes exactly 1 to \(\text{deg}(w) \)
- Endpoint \(u \) contributes exactly 1 to \(\text{deg}(u) \)
- Thus each edge contributes exactly 2 to the sum on the left
Properties

- Let
 - \(n \) = number of vertices
 - \(m \) = number of edges
 - \(\text{deg}(v) \) = degree of vertex \(v \)

- Property 2: In an undirected graph with no self-loops and no parallel edges \(m \leq n (n - 1)/2 \)

 Proof: Property 1 says: \(2m = \sum_v \text{deg}(v) \)

 each vertex has degree at most \((n - 1) \)

 \[m = \frac{1}{2} \sum_v \text{deg}(v) \leq \frac{1}{2} \sum_v (n - 1) = \frac{1}{2} n (n - 1) \]

 Property 2 says that \(m \) is \(O(n^2) \)
Euler Cycle and the 7 Bridges of Koenigsberg

- The year is 1735. City of Koenigsberg has a funny layout of 7 bridges across the river

- Is it possible to walk across each bridge exactly once and return to the same starting point?
 - thought impossible, but no one can prove it

- Eulerian Cycle
 - path that traverses every edge exactly once and returns to the first vertex

- Euler proves a theorem:

 A graph has a Eulerian Cycle if and only if all vertices have even degree
Main Methods of the Graph ADT

- Vertices and edges
 - are objects
 - can store elements

- Accessor methods
 - `endVertices(e)`: returns array of the two endvertices of `e`
 - `opposite(v, e)`: return the vertex opposite of `v` on `e`
 - `areAdjacent(v, w)`: true iff `v` and `w` are adjacent
 - `replace(v, x)`: replace element at vertex `v` with `x`
 - `replace(e, x)`: replace element at edge `e` with `x`

- Update methods
 - `insertVertex(o)`: insert and return a vertex storing element `o`
 - `insertEdge(v, w, o)`: insert and return an edge `(v,w)` storing `o`
 - `removeVertex(v)`: remove vertex `v` (and its incident edges) and return element stored at `v`
 - `removeEdge(e)`: remove edge `e` and return element stored at `e`

- Iterator methods
 - `incidentEdges(v)`: return iterator over edges incident on `v`
 - `vertices()`: return iterator over vertices
 - `edges()`: return iterator over edges