Lecture 16: Directed Graphs
Outline

- Directed Graphs
 - Properties
 - Algorithms for Directed Graphs
 - DFS and BFS
 - Strong Connectivity
 - Transitive Closure
 - DAG and Topological Ordering
Digraphs

- A **digraph** is a graph whose edges are all directed
 - short for “directed graph”
- Applications
 - one-way streets
 - flights
 - task scheduling
Digraph Properties

- Each edge goes in one direction:
 - edge \((A,B)\) goes from \(A\) to \(B\)
 - edge \((B,A)\) goes from \(B\) to \(A\)
- If \(G\) is simple, \(m \leq n^*(n-1)\).
- Keep in-edges and out-edges in separate adjacency lists, can perform listing of in-edges and out-edges in time proportional to their size
 - \(\text{outgoingEdges}(A)\): \((A,C), (A,D), (A,B)\)
 - \(\text{ingoingEdges}(A)\): \((E,A),(B,A)\)
- Vertex \(w\) is reachable from vertex \(v\) if there is a \textbf{directed} path from \(v\) to \(w\)
 - \(E\) is reachable from \(A\)
 - \(E\) is not reachable from \(D\)
Directed DFS

- DFS and BFS traverse edges only along their direction
- In the directed DFS, have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges

- Directed DFS, starting at vertex \(s \) visits all vertices reachable from \(s \)
 - if \(u \) is reachable from \(s \) does not mean that \(s \) is reachable from \(u \)

Algorithm DFS(\(G, v \))

Input: digraph \(G \) and a start vertex \(v \) of \(G \)
Output: traverses vertices in \(G \) reachable from \(v \)

setLabel(\(v \), VISITED)
for all \(e \in G.outgoingEdges(v) \)
 \(w \leftarrow \text{opposite}(v, e) \)
 if getLabel(\(w \)) = UNEXPLORED
 DFS(\(G, w \))
Reachability

- **DFS tree** rooted at v: vertices reachable from v via directed paths

 - DFS(G, C)

- **BFS tree** rooted at v: vertices reachable from v via directed paths

 - BFS(G, B)
A graph is strongly connected if from any fixed vertex can reach all other vertices.
stronglyConnected = true
for every vertex v in G
 DFS(G,v)
 if some vertex w is not visited
 stronglyConnected = false

- DFS(G,v) visits every vertex reachable from v
- Simple, yet inefficient, $O((n+m)n)$
1) Pick a vertex \(v \) in \(G \)

2) Perform a DFS from \(v \) in \(G \)
 - If there is vertex \(w \) not visited, print “no” and terminate
 - else from \(v \) can reach any other graph vertex

3) Let \(G' \) be \(G \) with edges reversed

4) Perform DFS from \(v \) in \(G' \).
 - If there is path from \(v \) to \(w \) in \(G' \), then there is path from \(w \) to \(v \) in original graph \(G \)
 - If every vertex is reachable from \(v \) in \(G' \), then there is a path from any \(w \) to \(v \) in original graph \(G \)
 - then \(G \) is strongly connected
 - to find path between any \(b \) and \(d \): first go from \(b \) to \(v \), then go from \(v \) to \(d \)
 - Running time is \(O(n + m) \), perform DFS 2 times
Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G^* such that
 - G^* has the same vertices as G
 - if G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v
- Transitive closure summarizes reachability in a digraph
Computing Transitive Closure

- Perform $\text{DFS}(G,v)$ for each vertex v

 \begin{verbatim}
 for all vertices v in graph G
 $\text{DFS}(G,v)$
 for all vertices w in graph G
 if w is reachable from v
 put edge (v,w) in G^*
 \end{verbatim}

- Running time is $O(n(n+m))$
 - $O(n^2)$ for sparse graphs, i.e. for a graph with $O(n)$ edges
 - $O(n^3)$ for dense graphs, i.e. for a graph with $O(n^2)$ edges
DAGs and Topological Ordering

- A **directed acyclic graph** (DAG) is a digraph that has no directed cycles.
- A **topological ordering** of a digraph is a numbering of vertices $1, 2, \ldots, n$

 such that for every edge (v, w),

 $\text{number}(v) < \text{number}(w)$

- Example: task scheduling
Topological Ordering

- **Scheduling problem:**
 put edge \((a, b)\) if task \(a\) must be completed before \(b\) can be started.

- **Number vertices so that**
 \(u.\text{number} < v.\text{number}\)
 for any edge \((u, v)\)

A typical student day:

- wake up
- study computer sci.
- eat
- nap
- more c.s.
- play
- write c.s. program
- make cookies for professors
- sleep
- dream about graphs
- work out
Topological Ordering Theorem

Theorem: Digraph admits topological ordering if and only if it is a DAG

Proof:

Suppose graph is not DAG, then it has cycle \(v_1, v_2, ..., v_{n-1}, v_n, v_1 \). If topological ordering exists, then

\[
v_1.num < v_2.num < ... < v_{n-1}.num < v_n.num < v_1.num
\]

- If graph is DAG, there is a vertex \(v \) with no outgoing edges
 - if every vertex has an outgoing edge, during DFS we will encounter a back edge, which means cycle
 - This vertex can be the last one in topological ordering
 - Removing this vertex from the graph with incoming and outgoing edges leaves the graph acyclic

```plaintext
counter = n
repeat until counter = 0
  1. Find vertex \( v \) with no outgoing edges
  2. Set topological label of \( v \) to \( counter \)
  3. Remove \( v \) from the graph together with all incoming and outgoing edges.
  4. \( counter = counter - 1 \)
```
Topological Sorting Algorithm Using DFS

- Simulate the algorithm by using depth-first search
- \textit{counter} is a an instance (global) variable

Algorithm \textit{topologicalDFS}(G)

\begin{itemize}
 \item \textbf{Input} dag \(G \)
 \item \textbf{Output} topological ordering of \(G \)
\end{itemize}

\begin{verbatim}
counter \leftarrow G.numVertices()
for all \(u \in G.\text{vertices}() \)
 \text{setLabel}(u, \text{UNEXPLORED})
for all \(v \in G.\text{vertices}() \)
 if \text{getLabel}(v) = \text{UNEXPLORED}
 \text{topologicalDFS}(G, v)
\end{verbatim}

\begin{itemize}
 \item \(O(n + m) \) time.
\end{itemize}

Algorithm \textit{topologicalDFS}(G, v)

\begin{itemize}
 \item \textbf{Input} graph \(G \) and a start vertex \(v \)
 \item \textbf{Output} labeling of the vertices of \(G \) in the connected component of \(v \)
\end{itemize}

\begin{verbatim}
setLabel(v, \text{VISITED})
for all \(e \in G.\text{outgoingEdges}(v) \)
 \text{w} \leftarrow \text{opposite}(v, e)
 if \text{getLabel}(w) = \text{UNEXPLORED}
 \text{topologicalDFS}(G, w)
\end{verbatim}

\begin{verbatim}
v.\text{topologicalNumber} = \text{counter}
counter \leftarrow counter - 1
\end{verbatim}
Topological Sorting Example
Topological Sorting Example