CS2210
Data Structures and Algorithms

Lecture 17: Shortest Paths
Outline

- Weighted Graphs
 - Shortest Paths Algorithm (Dijkstra’s)
Weighted Graphs

- Each edge has an associated numerical value, called the weight.
- Edge weights may represent: distances, costs, etc.
- Example: in a flight route graph, edge weight may represent the distance in miles between the endpoint airports.
- Notation $w(u,v)$ denotes the weight of edge (u,v).
Shortest Paths: Problem Statement

- Given a weighted graph and two vertices u and v, find a path of minimum total weight between u and v
 - length of a path is the sum of its edge weights
- Example
 - shortest path between PVD and HNL
- Applications
 - internet packet routing
 - driving directions
 - etc.
Shortest Paths: Assumptions

- **Graph is simple**
 - No parallel edges and no self-loops
- **Graph is connected**
 - if not, run the algorithm for each connected component
- **Graph is undirected**
 - simple to extend to directed case
- **No negative weight edges**
 - There is an algorithm to compute shortest paths in a graph with negative edges
 - It has higher time complexity
 - Does not work if there is a negative cost cycle
 - Makes no sense to compute shortest paths in the presence of negative cycles
 - in a graph with a negative cycle, shortest path has cost negative infinity
Shortest Paths Tree

- Suppose need the shortest path between vertices u and v
- Worst case complexity of computing shortest path between u and v is the same as for the shortest path between u and all other vertices in G
- Algorithm computes shortest distance between source vertex s and all other vertices
 - tree of shortest paths
Shortest Paths Algorithm: Overview

- Algorithm makes incremental progress
- Marked vertices are called a “blue cloud”
- Maintain property
 - for any vertex \(v \) in the blue cloud, the shortest distance from \(s \) to \(v \) has been computed correctly
- Blue cloud starts empty, and at each iteration grows by 1 vertex
- After \(n \) iterations, blue cloud has all vertices
 - shortest paths distances for all the vertices computed
Shortest Paths: Distance Function $d[v]$

- For each vertex v, maintain distance function $d[v]$ s.t.
 - If v is in the blue cloud, $d[v]$ is the shortest distance from s to v
 - If v is in **not** the blue cloud, $d[v]$ is the distance of the best **blue** path from s to v
 - a path is **blue** if it uses only the blue cloud vertices before reaching v
Shortest Paths: Initialization

- Start with
 1. empty blue cloud
 2. $d[s] = 0$
 3. $d[v] = \infty$ for all v not equal to s

- Initially, for all v in the blue cloud, $d[v]$ has the correct shortest distance from s to v

- At each iteration, need to figure out
 - which vertex v to inserted next into the blue cloud
 - how do we update distances $d[]$
Shortest Paths Algorithm: Main Part

- Insert into blue cloud vertex u which is outside the blue cloud and has the smallest $d[u]$
- For any vertex z which is not in blue cloud, and is adjacent to u, update its distance $d[z]$
 \[
d[z] \leftarrow \min\{d[z], d[u] + w(u,z)\}
\]
- $w(u,z)$ is the weight of edge (u,z)

First iteration
Shortest Paths: Edge Relaxation

- The second step is called **edge relaxation**
- After edge relaxation, may have discovered a shorter path from s to z
 - the new path goes through u

1. Insert into blue cloud vertex u which is outside the blue cloud and has the smallest $d[u]$
2. For any vertex z which is not in blue cloud, and is adjacent to u
 $$ d[z] \leftarrow \min\{d[z], d[u] + w(u,z)\} $$

- The new path from s to z has length 60
Example
Example (cont.)
Lemma 1: Any sub-path of a shortest path is a shortest path itself

Proof:

- Let P be the shortest path from s to v
- Let u and t be any nodes on P, and let P_{ut} be part of P from u to t
- Suppose P_{ut} is not the shortest path from u to t
- Then there is a path Q from u to t which is shorter than P_{ut}
- Let be P_{su} part of P from s to u, and P_{tv} part of P from t to v
- Combination of P_{su}, Q and P_{tv} is a shorter path from s to v than P
- Contradiction!
Lemma 2: Upper Bound

Lemma 2: \(d[v] \) is either infinite or length of some path from \(s \) to \(v \)

Proof:
- True after first iteration since
 - \(d[s] = 0 \) and
 - \(d[v] = \infty \) for all other vertices
- \(d[v] \) changes only due to update
 - \(d[v] = d[u] + w(u,v) \)
 - after update, \(d[v] \) is the length of some path that goes from \(s \) to \(u \) and then from \(u \) to \(v \)
- Thus \(d[v] \) larger than or equal to the length of shortest path from \(s \) to \(v \)
Shortest Paths: Proof of Correctness

Main Theorem: When vertex \(v \) is placed into the blue cloud, \(d[v] \) is equal to the shortest path length from \(s \) to \(v \)

Proof: (by contradiction)

- True after first iteration, since blue cloud has only \(s \) and \(d[s] = 0 \)
- Let \(k \) be the first iteration after which the theorem is false
- Let \(z \) be the vertex inserted into the blue cloud at iteration \(k \)
- Since the theorem fails after \(z \) is inserted, \(d[z] > \text{shortest distance from } s \text{ to } v \)
 - \(d[z] \) cannot be smaller according to lemma 2
- Consider situation just before \(z \) was inserted into the blue cloud
- Graph connected \(\Rightarrow \) there is shortest path \(P \) from \(s \) to \(z \)
- Let \(y \) be the first vertex in \(P \) which is not in the blue cloud
 - \(y \) could be \(z \), and \(P \) could reenter the blue cloud
- Let \(u \) be vertex immediately before \(y \) in \(P \)
 - \(u \) has to be in the blue cloud and \(u \) could be \(s \)
Proof of Correctness Continued

- Let P_{su} be part of P from s to u, and P_{yz} part of P from y to z
 - P consists of P_{su}, edge (u, y), and P_{yz}
- $d[y] \leq d[u] + w(u, y)$
 - since edge (u, y) was relaxed after u got inserted into blue cloud
 - relaxation: $d[y] \leftarrow \min\{d[y], d[u] + w(u, y)\}$
- $d[u] = \text{length of } P_{su}$
 - P_{su} is the shortest path from s to u by lemma 1
 - $d[u] = \text{length of shortest path from } s \text{ to } u \text{ since } u \text{ is in the blue cloud}$
 - and z is the first vertex for which theorem fails
- P_{su} with edge (u, y) is a shortest path from s to y by lemma 1
- Length of this path is $d[u] + w(u, y)$
- Thus $d[y] \leq d[u] + w(u, y) = \text{shortest path length from } s \text{ to } y \leq \text{length of } P$
 - last inequality holds due to non-negativity of edges
- $d[z] \leq d[y]$ since z is the next vertex chosen to go into the blue cloud
- Thus $d[z] \leq d[y] \leq \text{length of } P = \text{length of shortest path from } s \text{ to } z$
- but since $d[z]$ was supposed to be bigger than length of P
- Contradiction!
Shortest Paths: Dijkstra’s Algorithm

- Invented in 1959
- **Adaptable** priority queue Q stores vertices outside blue cloud
 - entries are aware of their location in Q
 - each entry has 3 fields
 - Key: distance
 - Value: vertex
 - Location:
 - Position of the entry in the heap
 - Needs to be updated when performing upheap/downheap
- Locator-based methods
 - $\text{insert}(k,v)$ returns new entry e
 - $e.l$ is the location of the new entry in the priority queue
 - $\text{replaceKey}(e,k)$ changes key of entry e
- Store with each vertex v
 - distance $d[v]$
 - locator in priority queue

Algorithm DijkstraDistances(G,s)

1. $Q \leftarrow$ new heap-based priority queue
2. for all $v \in G.\text{vertices}()$
 - if $v = s$
 - $v.\text{setDistance}(0)$
 - else
 - $v.\text{setDistance}(\infty)$
3. $l \leftarrow Q.\text{insert}(v.\text{getDistance}(v),v)$
4. $v.\text{setLocator}(l)$
5. while $\neg Q.\text{isEmpty}()$
6. - $u \leftarrow Q.\text{removeMin}()$
7. - for all $e \in G.\text{incidentEdges}(u)$
 - //relax edge e
 - $z \leftarrow G.\text{opposite}(u,e)$
 - $r \leftarrow u.\text{getDistance}()+e.\text{weight}()$
 - if $r < z.\text{getDistance}()$
 - $z.\text{setDistance}(r)$
 - $Q.\text{replaceKey}(\text{getLocator}(z),r)$
Dijkstra’s Algorithm Analysis

- Assume `setDistance` and `setLocator` is $O(1)$.
- First `for` loop takes $O(n \log n)$ time:
 - Insert each vertex into priority queue, one insertion is $O(\log n)$.
- `while` loop is executed exactly n times, once for each vertex:
 - For one iteration of `while` loop:
 - $O(\log n)$ to remove vertex u from priority queue.
 - $O(\deg u)$ to look at all incident edges from u.
 - $O[(\deg u)(\log n)]$ for `replaceKey`.
 - One iteration of `while` loop takes $O[(\deg u)(\log n)]$.
- Time for `while` loop is $O(m \log n)$:
 - Recall $\sum u \deg(u) = 2m$.
- Total time is $O((n+m) \log n)$.

```python
Q ← new heap-based priority queue
for all v ∈ G.vertices():
    if v = s
        v.setDistance(0)
    else
        v.setDistance(∞)
l ← Q.insert(v.getDistance(v), v)
v.setLocator(l)
while ¬Q.isEmpty():
    u ← Q.removeMin()
    for all e ∈ G.incidentEdges(u):
        //relax edge e
        z ← G.opposite(u, e)
        r ← u.getDistance() + e.weight()
        if r < z.getDistance():
            z.setDistance(r)
            Q.replaceKey(getLocator(z), r)
```
Shortest Paths Tree

- Extend Dijkstra’s algorithm to return a tree of shortest paths from the start vertex to all other vertices
- Store with each vertex the parent
- during edge relaxation step, update the parent

Algorithm DijkstraShortestPathsTree(G,s)

```
Q ← new heap-based priority queue
for all v∈G.vertices()
    if v = s
        v.setDistance(0)
    else
        v.setDistance(∞)

l ← Q.insert(v.getDistance(v),v)
v.setLocator(l)

while ¬Q.isEmpty()
    u ← Q.removeMin()
    for all e∈G.incidentEdges(u)
        //relax edge e
        z ← G.opposite(u,e)
        r ← u.getDistance()+e.weight()
        if r < z.getDistance()
            z.setDistance(r)
            z.setParent(u)
    Q.replaceKey(getLocator(z),r)
```
Shortest Path Tree

- Tree of shortest paths from a start vertex to all other vertices
- Example: Tree of shortest paths from Providence
Dijkstra’s algorithm may fail if the graph has negative edges

- correctness proof was based on the fact that length of a path is larger than or equal than length of any of its subpath
- If negative edges allowed, it is not longer the case

shortest distance from s to C is 2, but it is already in the cloud with d[C]=3!
Dijkstra’s Algorithm Summary

- Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex s

- Assumptions
 - the graph is connected and undirected
 - for directed graph, replace

 $$\text{for all } e \in G.\text{incidentEdges}(u)$$

 with

 $$\text{for all } e \in G.\text{outgoingEdges}(u)$$

 - edge weights are nonnegative