Lecture 19

Sorting

7 2 | 9 4 \rightarrow 2 4 7 9

7 | 2 \rightarrow 2 7

7 \rightarrow 7

2 \rightarrow 2

9 | 4 \rightarrow 4 9

9 \rightarrow 9

4 \rightarrow 4
Review 3 simple sorting algorithms:
1. selection Sort (in previous course)
2. insertion Sort (in previous course)
3. heap-Sort (mentioned it earlier in the course)

“Divide and Conquer” algorithm design
- applies not just to sorting

Sorting algorithms today using divide and conquer
- Merge Sort
- Quick Sort
 - you should have had Quick Sort it in a previous course
General Comments on Sorting

- Given a sequence S of elements to sort
 - for most general implementation, use comparator C, can reuse same code for non-decreasing and non-increasing order sorting

- **in-place vs. not in-place** sorting:
 - **in-place sorting**: need only a constant amount of additional space. This means sorting done in the original sequence S itself
 - **not in-place sorting**: need more than a constant amount of additional space. For example need another sequence of size $S.size()$
 - use in-place algorithm if space is an issue

- **recursive vs. non-recursive**:
 - non-recursive and recursive algorithms may have the same asymptotic (big-O) complexity, but in practice, non-recursive code is usually faster and should be preferred
 - recursive code is easier to write and understand, with practice 😊
Heap Sort

- array A of size n, indexed from 0 to $n - 1$
- Need to sort in non-decreasing order

$$H = \text{new empty min-heap}$$

for $i = 0$ to $n - 1$

$$H.insert(A[i])$$

for $i = 0$ to $n - 1$

$$A[i] = H.deleteMin()$$

- For non-increasing order, use max-heap
- Complexity: $O(n \log n)$
- Need $O(n)$ additional space for the heap data structure
- can implement heap-sort in-place by reusing the input array A for the heap data structure
Selection Sort

- array A of size n, indexes range from 0 to $n - 1$
- Iterate n times:
 - find the ith smallest element in the array A
 - insert this element in the ith location of the array A
 - after ith iteration, elements in range 0...$i - 1$ of A in correct position
Algorithm SelectSort(A,n)
Input: Array A and its size n
Output: Sorts elements of A in non-decreasing order

for $i = 0$ to $n - 2$
 // First find ith smallest element
 $minIndex = i$
 for $j = i + 1$ to $n-1$
 if $A[j] < A[minIndex]$ then
 $minIndex = j$
 // now swap the smallest element with ith element
 $temp = A[minIndex]$
 $A[minIndex] = A[i]$
 $A[i] = temp$
Selection Sort Complexity

- Outer `for` loop is performed \(n-1 \) times
- Inner `for` loop is performed \(n - 1 - i \) times for a fixed \(i \)
 - total time is
 \[
 \sum_{i=0}^{n-2} (n-1-i) = \sum_{i=1}^{n-1} i = \frac{(n-2)n}{2} - 1 = O(n^2)
 \]
 - \(\text{for } i = 0 \text{ to } n - 2 \)
 - \(\text{minIndex} = i \)
 - \(\text{for } j = i + 1 \text{ to } n-1 \)
 - if \(A[j] < A[\text{minIndex}] \) then
 - \(\text{minIndex} = j \)
 - \(\text{temp} = A[\text{minIndex}] \)
 - \(A[\text{minIndex}] = A[i] \)
 - \(A[i] = \text{temp} \)
- All other operations inside the `for` loops take constant amount of time. Thus total running time is \(O(n^2) \)
- Running time is independent of the contents of array \(A \), that is it is the best, worst, and average case running time
Insertion Sort

- after iteration i, array A should be sorted in the range $0...i$
- but elements in range $0...i$ are not necessarily in their final correct positions after iteration i
Algorithm InsertSort(A,n)
Output: Sorts elements of A in non-decreasing order
for i = 1 to n - 1
 // first find correct position for element A[i] so that subarray A[0... i] stays sorted
 x = A[i]
 j = i - 1
 while j ≥ 0 and A[j] > x do
 j = j - 1

 // the correct position for x is j+1, put x in that position
 A[j + 1] = x
Insertion Sort Complexity

- **for** loop is performed $n - 1$ times
- **while** loop is performed, for each fixed i,
 - i times in the worst case
 - 0 times in the best case, when sub-array $A[0...i]$ is already sorted
- All other statements take constant amount of time
- In the best case, insertion sort is $O(n)$
- In the worst case, insertion sort is $O(n^2)$

```plaintext
for i = 1 to n - 1
    x = A[i]
    j = i - 1
    while j ≥ 0 and A[j] > x do
        j = j - 1
    A[j + 1] = x
```

$$
\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}
$$
Divide-and-Conquer Approach

- **Divide-and-conquer** is a general algorithm design paradigm.
- Suppose need to solve some problem on a sequence S.
 - Example: sorting.
- Suppose solving the problem on S is hard, but if we have a solution on subsequences S_1 and S_2 of S, then combining these solutions into solution on S is easy.
 - **Divide**: divide the input data S in two disjoint subsets S_1 and S_2.
 - **Recur**: solve the subproblems associated with S_1 and S_2.
 - **Conquer**: combine the solutions for S_1 and S_2 into solution for S.
- Base case for recursion are subproblems of size 0 or 1.
 - Base case is usually trivial to solve.
Divide-and-Conquer Example

- **sequence** S to sort:

- **Divide**: split S into subsequences S_1 and S_2

- **Recur**: sort subsequences S_1 and S_2

- **Conquer**: merge sorted S_1 and S_2 into sorted S

- **Base case**: sorting a sequence of size 1 is trivial
Divide-and-Conquer

- **Merge-sort** is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort it has $O(n \log n)$ running time
- Unlike heap-sort
 - does not use an auxiliary priority queue
 - accesses data sequentially, so it is suitable to sort data on a disk
Merge-Sort

- Merge-sort on an input sequence S with n elements has three steps:
 - **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
 - **Recur**: recursively sort S_1 and S_2
 - **Conquer**: merge S_1 and S_2 into single sorted sequence

Algorithm $mergeSort(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.size() > 1$

$(S_1, S_2) \leftarrow partition(S, n/2)$

$mergeSort(S_1, C)$

$mergeSort(S_2, C)$

$S \leftarrow merge(S_1, S_2)$
Merging Two Sorted Sequences

- Conquer step: merge two sorted sequences S_1 and S_2 into a sorted sequence S
- Assume linked list implementation of a sequence
Merging Two Sorted Sequences

- merging two sorted sequences, each with \(n/2 \) elements and implemented with a doubly linked list is \(O(n) \)
- array implementation is \(O(n) \)

Algorithm \(merge(A, B) \)

Input sequences \(A \) and \(B \) with \(n/2 \) elements each

Output sorted sequence of \(A \cup B \)

\[
S \leftarrow\text{empty sequence}
\]

while \(\neg A.isEmpty() \land \neg B.isEmpty() \)

if \(A.first().element() < B.first().element() \)

\[
S.insertLast(A.removeFirst())
\]

else

\[
S.insertLast(B.removeFirst())
\]

while \(\neg A.isEmpty() \)

\[
S.insertLast(A.removeFirst())
\]

while \(\neg B.isEmpty() \)

\[
S.insertLast(B.removeFirst())
\]

return \(S \)
An execution of merge-sort is depicted by a binary tree:

- Each node represents a recursive call of merge-sort and stores:
 - Unsorted sequence before the execution and its partition.
 - Sorted sequence at the end of the execution (after →).
- The root is the initial call.
- The leaves are calls on subsequences of size 0 or 1.
Execution Example

- **Partition**

```
7  2  9  4
```

```
3  8  6  1
```

```
7  2
```

```
3  8
```

```
3  8  6  1
```

```
1  6
```

```
1  2  3  4  6  7  8  9
```
Execution Example (cont.)

- Recursive call, partition

```
7 2 9 4 | 3 8 6 1
```

```
<table>
<thead>
<tr>
<th>7 2</th>
<th>9 4</th>
</tr>
</thead>
</table>
```

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Execution Example (cont.)

- Recursive call, partition

```
| 7 2 9 4 | 3 8 6 1 |
```

```
| 7 2 | 9 4 |
```

```
| 7 | 2 |
```

```
```

```
```

```
```

```
```

```
```

Execution Example (cont.)

- Recursive call, base case

```
 7 2 9 4 | 3 8 6 1
```

```
 7 2 | 9 4
```

```
 7 | 2
```

```
 7 → 7
```
Execution Example (cont.)

- Recursive call, base case

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4
```

```
7 2 | 9 4
```

```
7 2
```

```
7 \rightarrow 7
```

```
2 \rightarrow 2
```

Execution Example (cont.)

- Merge

```
7 2 9 4 | 3 8 6 1
7 2 | 9 4
7 | 2 → 2 7
7 → 7 2 → 2
```

```
Execution Example (cont.)

- Recursive call, ..., base case, merge
Execution Example (cont.)

- Merge

```
7 2 9 4 3 8 6 1
```

```
7 2 9 4 2 4 7 9
```

```
7 2 2 7
9 4 4 9
```

```
7 7 2 2 9 9 4 4
```

```
7 7 2 2 9 9 4 4
```

```
7 9 4 2 4 9

7 9 4 4 2 9
```

```
7 7 2 9 4 4

7 7 2 9 4 4
```

```
7 7 2 7 7 2 9 4

7 7 2 9 4 4
```
Execution Example (cont.)

- Recursive call, ..., merge, merge
Execution Example (cont.)

- Merge

```
    7 2 9 4 | 3 8 6 1 \rightarrow 1 2 3 4 6 7 8 9
     /
 7 2 | 9 4 \rightarrow 2 4 7 9
     |
 7   | 2  \rightarrow 2 7
 9 4  \rightarrow 4 9
     |
 9   | 4  \rightarrow 9
 4   | 4  \rightarrow 4

    3 8 6 1 \rightarrow 1 3 6 8
     /
 3 8 \rightarrow 3 8
     |
 3   \rightarrow 3
 8   \rightarrow 8

    6 1 \rightarrow 1 6
     /
 6   \rightarrow 6
 1   \rightarrow 1
```
Non-Recursive Merge Sort

- Recursive implementation is less efficient (by a constant factor) than non-recursive implementation
- Merge-sort can be implemented non-recursively
 - at iteration i, break the sequence into groups of size 2^{i-1}
 - groups of 1, then 2, then 4, ...
 - merge 2 nearby groups together

$i = 1$

\[
\begin{align*}
7 & 2 9 4 3 8 6 1 \\
7 & 2 9 4 3 8 6 1 \\
7 & 2 9 4 3 8 6 1 \\
\end{align*}
\]

\[
\begin{align*}
2 & 7 4 9 3 8 1 6 \\
2 & 7 4 9 3 8 1 6 \\
2 & 4 7 9 1 3 6 8 \\
1 & 2 3 4 6 7 8 9 \\
\end{align*}
\]
Analysis of Merge-Sort

- Recurrence equations

 \[
 T(1) = c \\
 T(n) = kn + 2T(n/2)
 \]

- Solve recurrence equations:

 \[
 T(n) = kn + 2T(n/2) = kn + 2[kn/2 + 2T(n/4)] = kn + kn + 4T(n/4) = 2kn + 4T(n/4) = 2kn + 4[kn/4 + 2T(n/8)] = 3kn + 8T(n/8) = \ldots = ikn + 2^iT(n/2^i)
 \]

 Unwrapping stops when \(n/2^i = 1\), i.e. when \(i = \log n\)

 Thus \(T(n) = (\log n) kn + 2^{\log n}T(1) = kn(\log n) + cn\)

 Thus running time is \(O(n \log n)\)

Algorithm `mergeSort(S, C)`

- if `S.size() > 1`

 \((S_1, S_2) \leftarrow \text{partition}(S, n/2)\)

 `mergeSort(S_1, C)`

 `mergeSort(S_2, C)`

 \(S \leftarrow \text{merge}(S_1, S_2)\)
Part 2: Quick-Sort
Quick-Sort

- Randomized sorting algorithm based on the divide-and-conquer paradigm
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join L, E and G
Partition

- To partition, iterate
 - remove each element \(y \) from \(S \)
 - insert \(y \) into \(L, E \) or \(G \), depending on result of the comparison with pivot \(x \)
- Each insertion and removal is at the beginning or end of sequence, and hence takes \(O(1) \)
- Thus, partition step is \(O(n) \)

Algorithm partition\((S, p)\)

Input sequence \(S \), position \(p \) of pivot

Output subsequences \(L, E, G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

\(L, E, G \leftarrow \) empty sequences
\(x \leftarrow S\.elementAtPosition(p) \)
while \(\neg S\.isEmpty() \)

\(y \leftarrow S\.remove(S\.first()) \)
if \(y < x \)
 \(L\.insertLast(y) \)
else if \(y = x \)
 \(E\.insertLast(y) \)
else // \(y > x \)
 \(G\.insertLast(y) \)
return \(L, E, G \)
Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - unsorted sequence before the execution and its pivot
 - sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

```
7 4 9 6 2 → 2 4 6 7 9
```

```
4 2 → 2 4
```

```
7 9 → 7 9
```

```
2 → 2
```

```
9 → 9
```
Execution Example

- Pivot selection

![Diagram showing pivot selection process]
Execution Example

- Partition, recursive call, pivot selection
Execution Example

- Partition, recursive call, base case

```
7 2 9 4 3 7 6 1
```
```
2 4 3 1
```
```
1 → 1
```

1 → 1
Execution Example

- Recursive call, pivot selection

![Recursive call diagram](image-url)
Execution Example

- Recursive call, ..., base case, join
Execution Example

- Recursive call, pivot selection
Execution Example

- Partition, ..., recursive call, base case
Execution Example

- Join, join

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9
```

```
2 4 3 1 → 1 2 3 4
```

```
7 9 7 → 7 7 9
```

```
1 → 1
```

```
4 3 → 3 4
```

```
4 → 4
```

```
9 → 9
```
Worst-case Running Time

- Happens if pivot is the unique minimum or maximum element
- One of L and G has size $n - 1$ and the other has size 0
- The running time is proportional to the sum
 \[n + (n - 1) + \ldots + 2 + 1\]
- Worst-case time is $O(n^2)$
Expected Running Time

- Consider a recursive call on a sequence of size s
 - **good call**: the sizes of L and G are each less than $\frac{3}{4} s$
 - **bad call**: one of L and G has size greater than $\frac{3}{4} s$

- A call is **good** with probability $\frac{1}{2}$, since half of elements are good pivots
Expected Running Time

- Each good pivot reduces sequence size by at least \(\frac{3}{4} \)
- For a node of recursion depth \(i \), we expect
 - \(i/2 \) ancestors are good calls
 - The size of the input sequence for the current call is at most \((\frac{3}{4})^{i/2}n \)
- Solving \((\frac{3}{4})^{i/2}n = 1 \), for \(i \)
 - for a node of depth \(i = 2\log_{4/3}n \), the expected input size is one
 - the expected height of the quick-sort tree is \(O(\log n) \)
- The amount or work done at the nodes of the same depth is \(O(n) \)
- Thus, the expected running time of quick-sort is \(O(n \log n) \)
In-Place Quick-Sort

- Can implement quick-sort in-place
- In partition step, rearrange elements of input sequence s.t.
 - the elements less than pivot have rank less than \(j \)
 - the elements equal to pivot have rank between \(j \) and \(k \)
 - the elements greater than pivot have rank greater than \(k \)
- Recursive calls consider
 - elements with rank less than \(j \)
 - elements with rank greater than \(k \)

Algorithm inPlaceQuickSort(S, l, r)

Input sequence \(S \), ranks \(l \) and \(r \)

Output sequence \(S \) with the elements of rank between \(l \) and \(r \) rearranged in increasing order

1. if \(l \geq r \) //base case
 return
2. \(i \leftarrow \) random integer between \(l \) and \(r \)
3. \(x \leftarrow S.elemAtRank(i) \)
4. \((j, k) \leftarrow \) inPlacePartition\((x, l, r)\)
5. \(\) inPlaceQuickSort\((S, l, j - 1)\)
6. \(\) inPlaceQuickSort\((S, k + 1, r)\)
In-Place Partitioning \((x, l, r)\)

- First partition \(S\) (between ranks \(l\) and \(r\)) into \(L\) \(< x\) and \(EG\) \(\geq x\)

\[
\begin{array}{ccccccccccccc}
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 6 & 6 \\
\end{array}
\]

- Repeat until \(j\) and \(k\) cross
 - scan \(j\) to the right until find element \(\geq x\)
 - scan \(k\) to the left until find element \(< x\)
 - swap elements at ranks \(j\) and \(k\)
In-Place Partitioning \((x, l, r)\)

- Next partition \(EG\) into \(E\) and \(G\)

 \[
 \begin{array}{cccccccccc}
 3 & 2 & 5 & 1 & 0 & 2 & 3 & 5 & 9 & 7 & 7 & 9 & 8 & 9 & 6 & 9
 \end{array}
 \]

 \(j\) \hspace{1cm} \(k\)

 \(l\) \hspace{1cm} \(r\)

- Repeat until \(j\) and \(k\) cross
 - scan \(j\) to the right until find element \(> x\)
 - scan \(k\) to the left until find element \(= x\)
 - swap elements at indices \(j\) and \(k\)
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$ expected</td>
<td>in-place, randomized, fastest in practice (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (good for huge inputs when data must be stored on a disk)</td>
</tr>
</tbody>
</table>