Lecture 5: Hash Tables

Instructor: Olga Veksler
Outline

- Hash Tables
 - Motivation
 - Hash functions
 - Collision handling
 - Separate Chaining (open addressing)
 - Linked list, any other container class
 - Closed addressing
 - Linear Probing
 - Double hashing
Dictionary

- Dictionary stores key-value pairs \((k,v)\), called entries
- Linked List implementation
 - \(O(1)\) to insert and \(O(n)\) to find an element
- Ordered array implementation
 - \(O(n)\) to insert and \(O(\log n)\) to find an element
- Can we have a more efficient dictionary?
 - insert, find, delete \(O(1)\)?
 - Hash tables have \(O(1)\) expected time
Hash Table Motivation

- Suppose we know we will have at most N entries (k,v)
- Suppose keys k are unique integers between 0 to $N - 1$
- Create initially empty array A of size N
- Store (k,v) in $A[k]$
- Example

 $$(1, 'ape') \quad (3, 'or') \quad (N-1, 'sad')$$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>N-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>ape</td>
<td>null</td>
<td>or</td>
<td>sad</td>
</tr>
</tbody>
</table>

- Main operations (insert, find, remove) are $O(1)$
- Need $O(N)$ space
What if still have \(N \) keys, but they may be not unique?

\[(1, A) \ (1, R) \ (1, C) \ (3, D)\]

Use **bucket** array:

![Bucket Array Diagram]

A bucket can be implemented as a linked list

- Assume have at most a constant number (say 3) of repeated keys
- methods find(), remove(), insert() are still \(O(1) \)
Hash Table Motivation

1. What if we will have at most 100 entries with integer keys but the keys are in range 0 to 1,000,000,000?
 - still want $O(1)$ insert(), delete(), find(),
 - But do not want to use 1,000,000,000 memory cells to store only 100 entries

2. What if keys are not integers?
 - These 2 issues above motivate a **Hash Table** data structure
 - insert, find, delete are $O(1)$ expected (average) time
 - worst-case time is still $O(n)$
Hash Table: Main Idea

- Bucket array A of size N
- Design function $h(k)$ that maps key k into integer range $0, 1, ..., N - 1$

Entry with key k is stored at index $h(k)$ of array A

```
0 1 2 3 .......................... N-1

(k, v)  h(k) = 1
(k, v)  h(k) = 3
```
Hash Functions and Hash Tables

- A hash function h maps keys of given type to integers in interval $[0, N - 1]$
- Example for integer keys x

 $$h(x) = x \mod N$$

- The integer $h(k)$ is called the hash value of key k

- A hash table for a given key type consists of
 - hash function h
 - array (called table) of size N

- Store item (k, v) at index $i = h(k)$

- Collision happens when for $k_1 \neq k_2$, $h(k_1) = h(k_2)$
 - bucket array is one way to handle collisions
Hash Table Example

- Company has 5,000 employees, store information with key = SSN
 - SNN is a nine digit positive integer
 - if stored info under full 10 digit SSN, need array of size 9,999,999,999
- Hash table for storing entries (SSN,info)
 - array of size $N = 10,000$
 - hash function $h(x) =$ last four digits of x
Hash Functions

- Specify hash function as composition of two functions

 Hash code
 $h_1: \text{keys} \rightarrow \text{integers}$

 Compression function
 $h_2: \text{integers} \rightarrow [0, N - 1]$

- Hash code is applied first, and compression function second

 $h(x) = h_2(h_1(x))$

- Collision: two different keys assigned the same hash code

- To avoid collisions, the goal of the hash function is to “disperse” the keys in an apparently random way
 - both hash code and compression function should be designed so as to avoid collisions as much as possible
Hash Codes

- Hash code maps a key k to an integer
 - not necessarily in the desired range $[0,...,N-1]$
 - may be even negative
- We assume a hash code is a 32 bit integer
- Hash code should be designed to avoid collisions as much as possible
 - if hash code causes collision, then compression function will not resolve this collision
Memory Address Hash Code

- Interpret memory address of the key object as integer
 - sometimes done in Java implementations
 - any object inherits hashCode() method
- Sometimes sufficient, but often does not make sense
- Usually want objects with equal content to have the same hash code, this may not happen with inherited hashCode()
 - want \(s_1 \) = “Hello” and \(s_2 \) = “Hello” to have same hash code
 - \(s_1 \) and \(s_2 \) are stored at different memory locations
 - they do not have the same hashCode()
Integer Interpretation Hash Code

- Can reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type
 - For `byte`, `short`, `int`, `char` cast into type `int`
 - For `float`, use `Float.floatToIntegerBits()`
- If we cast into `int` 64 bit types `long` or `double`, half of the information is not used
 - many collisions possible if the most of the difference in keys is in those lost bits
Component Sum Hash Code

- Partition the bits of the key into components of fixed length of 32 bits and we sum the components ignoring overflows.

- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type.
 - e.g. long and double in Java.
Component Sum Hash Code

- Can do this for object of any length
- Suppose we have 128 bit object

 ![Diagram of 128 bit object divided into four 32-bit parts](image)

 first 32 bits next 32 bits next 32 bits last 32 bits

- Add the parts

 ![Diagram of parts added together to form hash code](image)

 hash code
Component Sum Hash Code

- Can do this even for variable length objects

- variable-length object can be viewed as tuple
 \((x_0, x_1, \ldots, x_{k-1})\)

- Component sum hash code is
 \(x_0 + x_1 + \ldots + x_{k-1}\)
Component Sum Hash Code: Strings

- Convenient to break strings into 8 bit components
 - i.e. characters
- Sum up characters in String \(s \)
- “abracadabra” = `a’ + `b’ +…+ `a’
- Many collisions
 - “stop”, “tops”, “pots”, “spot” have the same hash code
- Problem: position of individual characters is important, but not taken into account by the component sum hash code
Object is a variable length tuple \((x_0, x_1, \ldots, x_{k-1})\) and the order of \(x_i\)'s is significant

Choose non-zero constant \(c \neq 1\)

Polynomial hash code is:

\[
p(c) = x_0 + x_1 c + x_2 c^2 + \ldots + x_{k-1} c^{k-1}
\]

- overflows are ignored

Multiplication by \(c\) makes room for each component in a tuple of values, while also preserving a characterization of the previous components
Hash Code: Polynomial Accumulation

- Especially suitable for strings
- Experimentally, good choices $c = 33, 37, 39, 41$
- Choice $c = 33$ gives at most 6 collisions on a set of 50,000 English words
- Let $a = 33$
 - “top” = ‘t’+’o’*33+’p’*33^2=116+111*33+112*33^2=125747
 - “pot” = ‘p’+’o’*33+’t’*33^2=112+111*33+116*33^2=130099
Polynomial \(p(c) \) evaluated in \(O(k) \) time using Horner’s rule

\[
p(c) = x_0 + x_1c + x_2c^2 + \ldots + x_{k-1}c^k
\]

\[
= x_0 + c(x_1 + c(x_2 + \ldots + c(x_{n-3} + c(x_{n-2} + x_{n-1}c))\ldots))
\]

Compute:

\[
p_1 = x_{n-1}
\]

\[
p_2 = c \cdot p_1 + x_{n-2}
\]

\[
\ldots
\]

\[
p_i = c \cdot p_{i-1} + x_{n-i}
\]

\[
p(c) = p_k
\]

Algorithm

\[
p = x[k-1]
\]

\[
i = k - 2
\]

\[
\text{while } i \geq 0 \text{ do}
\]

\[
p = p \cdot c + x[i]
\]

\[
i = i - 1
\]
Hash Code: Polynomial Accumulation

\[p(c) = x_0 + x_1c + x_2c^2 + \ldots + x_{k-1}c^k \]

- Alternatively, can accumulate powers of \(c \)
- Also \(O(k) \) efficiency

Algorithm

\[
\begin{align*}
p &= x[0] \\
\text{accum} &= c \\
\text{for } i &= 1 \text{ to } k-1 \text{ do} \\
&p = p + x[i]*\text{accum} \\
\text{accum} &= \text{accum}*c
\end{align*}
\]
Compression Functions

- Now know how to map objects to integers using a suitable hash code
- The hash code for key k will typically not in the legal range $[0,\ldots,N-1]$
- Need compression function to map the hash code into the legal range $[0,\ldots,N-1]$
- Good compression function will minimize the number of collisions
Division Compression Function

- $h_2(y) = |y| \mod N$
- N should be a prime number
 - helps to spread out the hashed values
 - the reason is beyond the scope of this course
- Example: \{200,205,210,300,305,310,400,405,410\}
 - $N=100$, hashed values \{0,5,10,0,5,10,0,5,10\}=\{0,5,10\}
 - $N=101$, hashed values \{99,3,8,98,2,7,97,1,6\}
- $\mod N$ compression does not work well if there is repeated pattern of hash codes of form $pN+q$ for different p’s
MAD compression Function (Multiply Add and Divide)

- $h_2(y) = |ay + b| \mod N$
- N is a prime number
- $a > 0$ and $b \geq 0$ are integers such that
 - $a \mod N \neq 0$
 - otherwise, every integer would map to the same value, namely $(b \mod N)$
- a and b are usually chosen randomly at the time when a MAD compression function is chosen
- This compression function spreads hash codes fairly evenly in the range $[0,...,N-1]$
- MAD compression is better than mod N
Collision Handling via Separate Chaining

- Handle collisions with bucket array
 - Bucket is a linked list or any other container data structure
- This is called **Separate Chaining**
Load Factor

- Useful to keep track of load factor of the hash table
 - Tells us if the hash array too small to store current number of entries
- Suppose bucket array has size N and there are n entries
- The load factor is defined as $l = \frac{n}{N}$
- Suppose that the hash function is good
 - spreads keys evenly in the array $A[0, \ldots, N]$
- Then $\frac{n}{N}$ is expected number of items in each bucket
 - find, insert, remove, take $O(\frac{n}{N})$ expected time
- Ideally, each bucket should have at most 1 item
- Should keep the load factor $l < 1$
 - for separate chaining, recommended $l < 0.9$
- If load factor becomes too large, rehash
 - make hash array larger (at least twice) and re-insert all entries into the new hash array
Implement each bucket as list-based dictionary

Algorithm `insert(k,v):`

Input: A key k and value v
Output: Entry (k,v) is added to dictionary D

```
if (n+1)/N > 1 then  // Load factor became too large
    double the size of A and rehash all existing entries

e = A[h(k)].insert(k,v)  // A[h[k]] is a linked list
n = n+1  // n is number of entries in hash table
return e
```
Dictionary Methods with Separate Chaining

Algorithm findAll(k):

- **Input:** A key k
- **Output:** An iterator of entries with key equal to k

```plaintext
return A[h(k)].findAll(k)
```
Algorithm remove(e):
Input: an entry e
Output: The (removed) entry e or null if e was not in dictionary D

\[t = A[h(k)].remove(e) \] // delegate the remove to // dictionary at A[h(k)]}

if \(t \neq \text{null} \) then // e was found
 \(n = n - 1 \) // update number of entries in // hash table

return t
Open Addressing

- Separate chaining
 - Advantage: simple implementation
 - Disadvantage: additional storage requirements for auxiliary data structure (list)
- Can handle collisions without additional data structure, i.e. can store entries in hash array A
- This is called open addressing
 - A is not a bucket array in this case
 - Load factor has to be always at most 1
Open Addressing: Linear Probing

- Handle collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a probe
- Example
 - \(h(x) = x \mod 13 \)
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, 5, 6

![Table with inserted keys]
find with Linear Probing

Algorithm find(k)
 hashVal ← h(k)
p ← 0
repeat
 i ← (hashVal + p) mod N
c ← A[i]
if c = null
 return null
if c.key() = k
 return c
p ← p + 1
until p = N
return null

- start at cell h(k)
- probe consecutive locations until one of the following
 - item with key k is found, or
 - empty cell is found, or
 - N cells have been unsuccessfully probed
What about remove?

- \(h(x) = x \mod 13 \)

 - remove(18) → [6, 41, 44, 59, 32, 22, 31, 73, 5]
 0 1 2 3 4 5 6 7 8 9 10 11 12

 - find(31) → [44, 59, 32, 22, 31, 73, 5]
 0 1 2 3 4 5 6 7 8 9 10 11 12

- Oops, 31 is not found now!
Solution for remove

- Replace deleted entry with special **marker** to signal that an entry was deleted from that cell
 - **null** is a special marker, but we already use it for another purpose
 - create an Entry object, let us call it **AVAILABLE**
 - make sure to instantiate **AVAILABLE** only once in your hash table

Entry AVAILABLE = new **Entry**(someKey,someValue)

- do not care what the **someKey** and **someValue** are, we never use them
- we use **only** the reference (address) of object **AVAILABLE**
 - if A[index] == **AVAILABLE**
Solution for remove

- **remove(e)**
 - search for entry e
 - if entry e is found, we replace it with AVAILABLE
 - else return null

- Example: \(h(x) = x \mod 13 \)

```
0  1  2  3  4  5  6  7  8  9  10 11 12
```

- remove(18)

```
0  1  2  3  4  5  6  7  8  9  10 11 12
```

- find(31)

```
0  1  2  3  4  5  6  7  8  9  10 11 12
```
Linear Probing: fixed find

Algorithm `find(k)`

1. `hVal ← h(k)`
2. `p ← 0`
3. repeat
 1. `i ← (hVal + p) mod N`
 2. `c ← A[i]`
 3. if `c = null`
 1. return `null`
 4. if `c != AVAILABLE`
 1. if `c.key() = k`
 1. return `c`
 5. `p ← p + 1`
4. until `p = N`
5. return `null`

- Do not access `A[i].key` before making sure `A[i] ≠ AVAILABLE`
insert with Linear Probing

- **insert**\((k, v)\)
 - rehash if load factor becomes too large
 - start at cell \(h(k)\)
 - probe consecutive cells until find **null** or **AVAILABLE** cell found
 - insert new entry at that cell

- **Example:** \(h(x) = x \mod 13\)
 - \(h(x) = x \mod 13\)
 - \(h(57) = 57 \mod 13 = 11\)
 - \(h(4) = 4 \mod 13 = 4\)
 - \(\text{insert}(57)\)
 - \(57\) inserted at cell 11
 - \(\text{insert}(4)\)
 - \(4\) inserted at cell 4
Problems with Linear Probing

- Entries tend to cluster into contiguous regions
- Results in many probes per find, insert, and remove methods
- The more probes per find, insert, remove, the slower the code
Open Addressing: Double Hashing

- Linear Probing places item in first available cell in series:
 \[(h(k) + p \cdot 1) \mod N \quad \text{for} \quad p = 0, 1, \ldots, N - 1 \]

- Double hashing uses secondary hash function \(h'(k) \) and places item in first available cell in the series:
 \[(h(k) + p \cdot h'(k)) \mod N \quad \text{for} \quad p = 0, 1, \ldots, N - 1 \]
 - must have \(0 < h'(k) < N \)
 - table size \(N \) must be a prime to allow probing of all cells
 - linear probing is a special case of double hashing with \(h'(k) = 1 \) for all \(k \)
 - double hashing spreads entries more evenly through hash array
Open Addressing: Double Hashing

- Good choice for secondary hash function
 \[h'(k) = q - k \mod q \]

- where
 - \(q < N \)
 - \(q \) is a prime

- Possible values for \(h'(k) \) are
 \[1, 2, ..., q \]

- Assumed \(k \) is integer

- If not, use \(h'(k) = q - |\text{HashCode}(k)| \mod q \)
Double Hashing Example

- \((h(k) + p*h'(k)) \mod N\) for \(p = 0, 1, \ldots, N - 1\)
 - \(N = 13\)
 - \(h(k) = k \mod 13\)
 - \(h'(k) = 7 - k \mod 7\)

- Insert keys in order 18, 41, 22, 44, 59, 32, 31, 73

- Insert 18
 - \(h(18) = 18 \mod 13 = 5\)
 - \(h'(18) = 7 - 18 \mod 7 = 3\)
 - First empty location in sequence
 - \((5 + 3*0) \mod 13, (5 + 3*1) \mod 13, (5 + 3*2) \mod 13, \ldots\)
Double Hashing Example

- Insert 41
 - $h(41) = 41 \mod 13 = 2$
 - $h'(41) = 7 - 41 \mod 7 = 1$
 - first empty location in sequence
 - $(2 + 1 \times 0) \mod 13$, $(2 + 1 \times 1) \mod 13$, $(2 + 1 \times 2) \mod 13$, ...

![Double Hashing Example Diagram]
Double Hashing Example

- **Insert 22**
 - \(h(22) = 22 \mod 13 = 9 \)
 - \(h'(22) = 7 - 22 \mod 7 = 6 \)
 - first empty location in sequence: \((9 + 6*0) \mod 13, (9 + 6*1) \mod 13, (9 + 6*2) \mod 13, \ldots\)
Double Hashing Example

- Insert 44
 - \(h(44) = 44 \mod 13 = 5 \)
 - \(h'(44) = 7 - 44 \mod 7 = 5 \)
 - first empty location in sequence: \((5 + 5*0) \mod 13, (5 + 5*1) \mod 13, (5 + 5*2) \mod 13, \ldots\)
Double Hashing Example

- Insert 59
 - $h(59) = 59 \mod 13 = 7$
 - $h'(59) = 7 - 59 \mod 7 = 4$
 - first empty location in sequence: $(7 + 4\times0) \mod 13$, $(7 + 4\times1) \mod 13$, $(7 + 4\times2) \mod 13$, ...

```
0 1 2 3 4 5 6 7 8 9 10 11 12
```

```
0 1 2 3 4 5 6 7 8 9 10 11 12
```
Double Hashing Example

- Insert 59
 - $h(59) = 59 \mod 13 = 7$
 - $h'(59) = 7 - 59 \mod 7 = 4$
 - first empty location in sequence: $(7 + 4 \times 0) \mod 13, (7 + 4 \times 1) \mod 13, (7 + 4 \times 2) \mod 13, ...$

![Double Hashing Example Diagram]
Double Hashing Example

- Insert 32
 - $h(32) = 32 \mod 13 = 6$
 - $h'(32) = 7 - 32 \mod 7 = 3$
 - first empty location in sequence: $(6 + 3*0) \mod 13$, $(6 + 3*1) \mod 13$, $(6 + 3*2) \mod 13$, ...

```
0  1  2  3  4  5  6  7  8  9 10 11 12
```

```
0  1  2  3  4  5  6  7  8  9 10 11 12
```

```
0  1  2  3  4  5  6  7  8  9 10 11 12
```

```
0  1  2  3  4  5  6  7  8  9 10 11 12
```
Double Hashing Example

- **Insert 31**
 - $h(31) = 31 \mod 13 = 5$
 - $h'(31) = 7 - 31 \mod 7 = 4$
 - first empty location in sequence: $(5 + 4 \times 0) \mod 13$, $(5 + 4 \times 1) \mod 13$, $(5 + 4 \times 2) \mod 13$, ...

```
0 1 2 3 4 5 6 7 8 9 10 11 12
```

```
31 41 18 32 59 22 44
```

```
0 1 2 3 4 5 6 7 8 9 10 11 12
```
Double Hashing Example

- **Insert 73**
 - \(h(73) = 73 \mod 13 = 8 \)
 - \(h'(73) = 7 - 73 \mod 7 = 4 \)
 - first empty location in sequence: \((8 + 4*0) \mod 13, (8 + 4*1) \mod 13, (8 + 4*2) \mod 13, \ldots\)
Double Hashing Example Summary

- Probe summary
 - 8 insertions, 11 probes
 - 11/8 probes on average

- Want average number of probes to be small

<table>
<thead>
<tr>
<th>k</th>
<th>h(k)</th>
<th>h'(k)</th>
<th>Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>73</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

```
31 41 18 32 59 73 22 44
```

0 1 2 3 4 5 6 7 8 9 10 11 12
find with Double Hashing

Algorithm \textit{find}(k)
\begin{align*}
&\text{hVal} \leftarrow h(k) \\
&\text{hVal2} \leftarrow h'(k) \\
&p \leftarrow 0 \\
\text{repeat} \\
&\quad i \leftarrow (\text{hVal} + p \cdot \text{hVal2}) \mod N \\
&\quad c \leftarrow A[i] \\
&\quad \text{if } c = \text{null} \\
&\quad\quad \text{return null} \\
&\quad \text{if } c \neq \text{AVAILABLE} \\
&\quad\quad \text{if } c.\text{key()} = k \\
&\quad\quad\quad \text{return } c \\
&\quad p \leftarrow p + 1 \\
\text{until } p = N \\
\text{return null}
\end{align*}
Open Addressing Performance

- Worst case: \texttt{find()}, \texttt{insert()} and \texttt{remove()} are $O(n)$
 - worst case occurs when all inserted keys collide
- Load factor $l = \frac{n}{N}$ affects performance
- Assuming that hash values are like random numbers, can show that expected number of probes for \texttt{insert()}, \texttt{find()}, \texttt{remove()} is
 \[
 \frac{1}{1-l}
 \]
- Recommended to keep $l < 0.5$, then
 \[
 \frac{1}{1-l} \leq 2
 \]
Separate Chaining vs. Open Addressing

- Open addressing saves space over separate chaining
- Separate chaining is usually faster (depending on load factor of the bucket array) than the open addressing, both theoretically and experimentally
- Thus, if memory space is not a major issue, use separate chaining, otherwise use open addressing
Separate Chaining vs. Open Addressing

- Open addressing saves space over separate chaining
- Separate chaining is usually faster (depending on load factor of the bucket array) than the open addressing, both theoretically and experimentally
- Thus, if memory space is not a major issue, use separate chaining, otherwise use open addressing
public interface HashCode<K> {
 public int giveCode(K k);}

public class HashDict<K,V> implements Dict<K,V> {
 private HashCode<K> hCode;

 public HashDict(HashCode<K> inCode, float maxLFactor)
 {
 hCode = inputCode;
 ...
 }

 public Entry<K,V> find(K key)
 {
 int h = hCode.giveCode(key); ...
 }
}
public class WordPuzzle {
 StringHashCode = hC new StringHashCode();
 HashDict<String,Integer> D = new hashDict<String,Integer>(hC,(float) 0.6);
}

public class StringHashCode implements HashCode<String> {
 public int giveCode(String key) {

 }
}