Lecture 7: Priority Queues and Heaps
Outline

- Priority queue ADT
- 2 Simple List-based implementation for Priority Queue
 - not as efficient as possible
- Heap Data structure
 - First moderately complex data structure that you haven’t seen before
- Heap-based implementation for Priority Queue
 - very efficient
Priority

- Frequently elements that we wish to store in a data structure have “priorities”
- Operations should be done in order of the priority
- Examples
 - air-traffic control, each flight to clear for landing has priority depending on its distance from the airport, amount of fuel left, etc.
 - standby passengers for a full flight have different based on their frequent-flyer status, check-in time, etc.
 - shared printer may assign priorities to documents based on time submitted, size of the document, seniority of the user, etc.
Priority Queue ADT

- A **priority queue** is an abstract data type for storing a collection of prioritized elements.
- Two main methods:
 - insertion of arbitrary element
 - removal of element of highest priority
- In our implementation, a priority queue stores **entries**
- Like for dictionaries, each **entry** is a pair (**key**, **value**)
 - **key** is the **priority** associated with the entry
 - unless stated otherwise, assume smaller **key** corresponds to higher priority
Priority Queue ADT

- Main methods
 - `insert(k, v)`
 inserts an entry with key `k` and value `v`
 - `removeMin()`
 removes and returns the entry with smallest key

- Additional methods
 - `min()`
 return, but do not remove, entry with smallest key
 - `size()`
 - `isEmpty()`
Keys and Comparators

- Two distinct entries in a priority queue can have the same key
- Keys in can be arbitrary objects with defined order
- General priority queue uses an external comparator object
 - comparator is external to the keys being compared
- Primary method of Comparator Interface
 - `compare(a, b)`: returns an integer i such that
 - $i < 0$ if $a < b$,
 - $i = 0$ if $a = b$,
 - $i > 0$ if $a > b$
Sequence-based Priority Queue

- Unsorted list implementation

 4 → 5 → 2 → 3 → 1

 - Performance
 - `insert` takes $O(1)$ time since can insert item at sequence beginning (or end)
 - `removeMin` and `min` take $O(n)$ time since have to traverse entire sequence to find the smallest key

- Sorted list implementation

 1 → 2 → 3 → 4 → 5

 - Performance
 - `insert` takes $O(n)$ time since have to find proper place to insert
 - `removeMin` and `min` take $O(1)$ time, since the smallest key is at sequence beginning
Sequence-based Priority Queue

- Implementation with an unsorted list
 - fast inserts $O(1)$
 - slow removals $O(n)$

- Implementation with a sorted list
 - slow inserts $O(n)$
 - fast removals $O(1)$

- Can we balance running time between insertion and removal to achieve better efficiency on both?
- Yes, with the data structure called heap!
Complete Binary Tree

- Note: different from full binary tree
- A binary tree with height h is complete if
 1. Has the maximum possible number of nodes at levels 0, 1, ..., $h-1$
 - that is level i has 2^i nodes
 2. at level h, all nodes must be as far to the left as possible
Theorem: A complete tree of size n has height $O(\log n)$

- Let h be the height of a complete binary tree of size n
- Exactly 2^i nodes at depth $i = 0, \ldots, h - 1$ and at least one node at depth h
- Thus $n \geq 1 + 2^1 + 2^2 + \ldots + 2^{h-1} + 1$
- Thus $n \geq 2^h$
- Take logarithm of both sides: $h \leq \log n$
Heaps

- A heap is a complete binary tree that satisfies Heap-Order
 - for every non-root node \(v\)
 \[\text{key}(v) \geq \text{key}(\text{parent}(v))\]
- Heap-order implies that each path in the tree is sorted
Heaps

- Since heap is a complete binary tree $h \leq \log n$
 - n is the number of heap entries
 - h is the heap height
- Path length is logarithmic in the number of nodes
- Define the last heap node as the rightmost node of depth h
Heaps and Priority Queues

- Will use a heap to implement a priority queue
- Store entry = (key, element) at each node
- Will keep track of the position of the last node

```
last node

(2, Sue)

(5, Pat) (6, Mark)

(9, Jeff) (7, Anna)
```
Insertion into a Heap

- Method $\text{insert}(k,v)$
- Three steps
 - find insertion node z (the new last node)
 - store (k,v) at z, this likely violates the heap order
 - Restore heap-order with upheap

![Diagram of a heap with nodes labeled 1 to 9 and an insertion node Z at the bottom right.](image)
Upheap

- Restores heap-order by swapping k along an upward path from the insertion node.
- Terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.
- Example
 - insert entry with key 1
Upheap: Another Example

- Insert entry with key 3
- Upheap terminates when key k reaches the root or node whose parent has key smaller than or equal to k
- In the worst case, traverse a full path from last level to the root
 - perform a constant number of operations at each node
- All paths have height $O(\log n)$
- Upheap and insert have $O(\log n)$ worst case time
Removal from a Heap

- Method `removeMin()`
- Three steps
 - replace the root entry with the entry at the last node \(w \), and find the new “last node”
 - remove node \(w \)
 - restore the heap-order with `downheap`
Downheap

- Restores heap-order by swapping entry \((k, v)\) along a downward path from the root
 - most nodes have 2 children
 - swap with smallest key child
- Terminates when key \(k\) reaches a leaf or a node whose children have keys greater than or equal to \(k\)
- Traverses one path in the worst case
 - \(O(1)\) operations at each node
- downheap runs in \(O(\log n)\) time
- removeMin() runs in \(O(\log n)\) time
Downheap: Another Example
Array-based Heap Implementation

- Array-based implementation is the best choice
 - no need to store links between parent-child
- Store root at rank 1
- For the node at rank \(i \)
 - the left child is at rank \(2i \)
 - the right child is at rank \(2i + 1 \)
 - its parent is at rank \(i/2 \), integer division
- Last node is always at rank \(n \)
 - In insert, put new entry at rank \(n + 1 \) and perform upheap
 - In removeMin, replace entry at rank 1 with entry at rank \(n \), and perform downheap
- For \(n \) entries, need array of size \(n + 1 \)
 - use an “expandable” array
Heap Insertion

Algorithm InsertInHeap(k,v)
Input: A priority k, value v;
Output: none

size = size + 1 // Increase heap size
H[size] = new entry(k,v) // Insert entry (k,v) at rank = array size

// Now perform upheap, starting at the last tree node
i = size
while i > 1 and H[i/2].key() > k
 swap(H[i], H[i/2]) // Swap entry (k,v) with parent node entry
 i = i/2 // Move to parent node
Algorithm `removeMin()`

Input: none

Output: entry with the smallest key

```plaintext
if size == 0 then ReportErrorSomehow
itemToReturn = H[1]    // minimum is always at rank 1
H[1] = H[size]         // put entry at last rank into the root location
size = size - 1       // decrease heap size
// Now restore heap order with downheap
i = 1
childIndex = findSmallestKeyChild(i)
while childIndex != 0 && H[childIndex].key < H[i].key
    swap(H[childIndex],H[i])
    i = childIndex
childIndex = findSmallestKeyChild(i)
return itemToReturn
```
Algorithm `findSmallestKeyChild (i)`

Input: index i of a node

Output: index of the child of node i with smallest key, or 0 if node i is a leaf

```
if (2*i < size)
    // node at index i has 2 children
    if H[2*i].key < H [2*i+1].key then
        return(2*i)
    else
        return(2*i+1)
else if (2*i == size)
    // node at index i has only a left child
    return(2*i)
else
    // node at index i is a leaf
    return(0)
```