Lecture 9: AVL TREES
definition, properties, insertion
BST Performance

- BST with n nodes and of height h
 - methods find, insert and remove take $O(h)$ time
- h is $O(n)$ in the worst case and $O(\log n)$ in the best case

worst case

best case
Balanced Tree Motivation

- Need to insure height h of BST is $O(\log n)$
 - then worst case complexity for find, insert, remove is $O(\log n)$
- height h is $O(\log n)$ for a balanced tree
- Informally, a tree is balanced, if for any node
 - the size of its left subtree not too different from size of the right subtree
 - or, equivalently, left and right subtree heights are not too different
- More formally, a tree is balanced if its height is $O(\log n)$
Balanced Trees

- Complete tree is an example of a balanced tree
 - used for a priority queue
 - heap supports `insert` and `removeMin`, but it does not support `find` and `remove`
 - thus heap does not work for an ordered dictionary

- There are other examples of balanced trees that support `find`, `insert`, `remove`
 - AVL trees
Definition: Height of a Node

- **height a tree node** v is the height of the subtree rooted at node v
 - recall that tree height is the maximum over tree node depths

![Tree Diagram]

- 6
- 3
- 2
- 1
- 8
- 1
- 2
- 1
- 1
- 0
- 0
- 0
- 0
- 0
- 0
Definition: AVL Tree

- Inventors: Adel'son-Vel'skii and Landis (1962)
 - "An algorithm for organization of information", Doklady Akademii Nauk USSR
- AVL Tree is BST that satisfies the **height-balance property**
 - for every node v, the heights of its left and right children differ by at most 1
- Height-balance property ensures that height is logarithmic in the number of nodes
Theorem: Height h of AVL tree storing n keys is $O(\log n)$

Proof: Let $n(h)$ be number of internal nodes in smallest AVL tree of height h

- $n(1) = 1$ and $n(2) = 2$

- $n(h) = 1 + n(h-1) + n(h-2) > 1 + n(h-2) + n(h-2) > 2n(h-2)$
- solving: $n(h) > 2n(h-2)$, $n(h) > 4n(h-4)$, $n(h) > 8n(h-6)$, ... , $n(h) > 2^i n(h-2i)$
- base case: $h-2i=1$, solving for i, we get $i=(h-1)/2$
- therefore $n(h) > 2^{(h-1)/2}$ $n(1)=2^{(h-1)/2}$
- take logarithms of both sides: $h < 2\log n(h) + 1$
Operations in AVL Tree

- The height of an AVL tree is $O(\log n)$
- Thus find is $O(\log n)$
 - performed just like in BST since AVL tree is BST
- Have to show how to insert and remove in AVL trees, while maintaining
 1. the height-balance property
 2. the binary search tree order
Insertion in an AVL Tree

- Insertion starts as in BST
 - expanding at external node
- Example: insert 54

```
before inserting

```

```
after inserting

```

insertion node w
Insertion in an AVL Tree

- After inserting at external, height-balance property is likely lost
- Need to restructure the tree

- Will use “pictorial” notation
Rebalancing After Insertion

- Node is **unbalanced** if difference in heights of its left and right children is more than 1
- After insertion, only heights of ancestors of insertion node \(w \) could change
 - if change, increase by exactly 1
- Need to check only ancestors of \(w \)
- Follow the path from \(w \) to the root, updating the heights and correcting any unbalanced nodes
 - in about 50% of the cases, insertion causes no unbalance
Rebalancing After Insertion

- Suppose z is the first unbalanced node on the path from w to the root
- Height difference between the left and the right child of z is more than 1
 - tree was balanced before the insertion
 - insertion can change height only by 1
- Thus this height difference is **exactly** 2
- One subtree has height p, other height $p+2$
 - w was inserted into the higher subtree
 - the higher subtree could be on the left as well
Rebalancing After Insertion

- Let S be the higher subtree
 - could be either on the left or on the right of z
- z was balanced before insertion, so height of S was $p+1$ before insertion

- S had at least one internal node before insertion, since its height is $p+1$
- Therefore S has a non-leaf root
- Let y be the root of S
Rebalancing After Insertion

- Let y be the root of S
 - y balanced after insertion
- Expand structure of S before insertion
- **Case 1:** both subtrees of S have height p
 - y's balanced after insertion
- **Case 2:** one subtree of S has height p, another height $p - 1$
 - w will be inserted in higher subtree
 - impossible, since y would become unbalanced after insertion
- \(w \) could have been inserted into the right subtree of \(y \)
- S could be either the left or right subtree of z
- w could have been inserted either in left or right subtrees of y
- Let R be the higher subtree of y
Rebalancing After Insertion

- Let R be the higher subtree of y
 - R contains w, which is an internal node
 - therefore R has at least one internal node
- Let x be the root of R
 - height of R went from p before insertion to $p+1$ after insertion
 - x was balanced before insertion and stays balanced after insertion
 - both subtrees of x had height $p-1$ before insertion
 - After insertion, one subtree of x has height p, the other height $p-1$
- y could be either left or right child of z
- x could be either left or right child of y
Before Insertion vs after Insertion
BST order is preserved

- \(z \leq x \leq y \)
- all keys in grey subtree larger than \(z \)
- all keys in yellow subtree smaller than \(y \)
This case is when y to the right of z, x to the left of y

Three other cases

- y to the right of z, x to the right of y
- y to the left of z, x to the left of y
- y to the left of z, x to the right of y
Rebalance, other cases

- y to the right of z, x is to the right of y
- y to the left of z, x is to the left of y
Rebalance, other cases

- y to the left of z, x is to the right of y
Trinode Restructuring

- **trinode restructuring** handles all cases

Call

- node x as the middle (has middle key)
- node y as the smallest (has smallest key)
- nodes z as the largest (has largest key)

Make

- middle node new subtree parent
- smallest node its left child
- largest node its right child
- subtrees of middle node are orphaned
 - left subtree, if present, goes to the new left child
 - right subtree, if present, goes to the new right child
PseudoCode for Trinode Restructuring

Algorithm TriNodeRestructure(x,y,z)

Input: Unbalanced node z, y is the taller child of z, x is the taller child of y

Output: position of the node that goes in the place of z in the tree structure

if z.right() = y and y.left() = x then a = z; b = x; c = y
if z.right() = y and y.right() = x then a = z; b = y; c = x
if z.left() = y and y.left() = x then a = x; b = y; c = z
if z.left() = y and y.right() = x then a = y; b = x; c = z
if (z = root) then
 root = b; //root changes after triNodeRestructure
 b.parent = null
else
 // reconnect parent of z to the node replacing z
 if z.parent.left() = z then MakeLeftChild(z.parent, b);
 else MakeRightChild(z.parent, b);

if b.left() ≠ x and b.left() ≠ y // left orphan present
 MakeRightChild(a, b.LeftChild);
if b.right() ≠ x and b.right() ≠ y // right orphan present
 MakeLeftChild(c, b.RightChild);
MakeLeftChild(b,a);
MakeRightChild(b,c);
return b
Pseudo-Code for Trinode Restructuring

Algorithm TriNodeRestructure(x, y, z)
Input: Unbalanced node z, y is the taller child of z, x is the taller child of y
Output: position of the node that goes in the place of z in the tree structure

if z.right() = y and y.left() = x then a = z; b = x; c = y
if z.right() = y and y.right() = x then a = z; b = y; c = x
if z.left() = y and y.left() = x then a = x; b = y; c = z
if z.left() = y and y.right() = x then a = y; b = x; c = z
PseudoCode for Trinode Restructuring

Algorithm TriNodeRestructure(x,y,z)
Input: Unbalanced node z, y is the taller child of z, x is the taller child of y
Output: position of the node that goes in the place of z in the tree structure

if (z = root) then
 root = b; //root changes after triNodeRestructure
 b.parent = null
else // reconnect parent of z to the node replacing z
 if z.parent.left() = z then MakeLeftChild(z.parent, b)
 else MakeRightChild(z.parent, b)
Algorithm TriNodeRestructure(x, y, z)
Input: Unbalanced node z, y is the taller child of z, x is the taller child of y
Output: position of the node that goes in the place of z in the tree structure

if (z = root) then
 root = b; // root changes after triNodeRestructure
 b.parent = null
else // reconnect parent of z to the node replacing z
 if z.parent.left() = z then MakeLeftChild(z.parent, b)
 else MakeRightChild(z.parent, b)
Algorithm TriNodeRestructure(x,y,z)

Input: Unbalanced node z, y is the taller child of z, x is the taller child of y

Output: position of the node that goes in the place of z in the tree structure

if b.left() ≠ x and b.left() ≠ y // left orphan present
 MakeRightChild(a, b.LeftChild);
if b.right() ≠ x and b.right() ≠ y // right orphan present
 MakeLeftChild(c, b.RightChild);
Algorithm TriNodeRestructure(x, y, z)
Input: Unbalanced node z, y is the taller child of z, x is the taller child of y
Output: position of the node that goes in the place of z in the tree structure

if b.left() ≠ x and b.left() ≠ y // left orphan present
 MakeRightChild(a, b.LeftChild);
if b.right() ≠ x and b.right() ≠ y // right orphan present
 MakeLeftChild(c, b.RightChild);
Algorithm TriNodeRestructure(x, y, z)

Input: Unbalanced node z, y is the taller child of z, x is the taller child of y

Output: position of the node that goes in the place of z in the tree structure

MakeLeftChild(b, a)
MakeRightChild(b, c)

return b
PseudoCode for Trinode Restructuring

- **MakeLeftChild**(a, b) makes node b left child of node a
 - a.leftchild = b
 - b.parent = a

- **MakeRightChild**(a, b) makes node b right child of node a
 - a.rightchild = b
 - b.parent = a

- Trinode restructuring is **O(1)**
 - constant number of comparisons and assignments
After one trinode restructure, height-balance property is restored globally
- can stop checking ancestor path after trinode restructure
Algorithm AVLtreeInsert(k, o)

Input: key k and value o; Output: node where the entry was inserted

$w = \text{TreeInsert}(k, o, T.\text{root})$ // w holds position of new entry (k, o)

// now need to check and if needed, restore height-balance property
$z = w$

while ($z \neq \text{null}$) // traverse up the tree, checking for imbalance
 setHeight(z) // reset the height of z since it may have changed
 if $|\text{getHeight}(z.\text{left})-\text{getHeight}(z.\text{right})| > 1$ then
 $z = \text{TriNodeRestructure}($tallerChild(tallerChild($z$)), tallerChild($z$), z)$
 \text{setHeight}(z.\text{left}); \text{setHeight}(z.\text{right}); \text{setHeight}(z)$;
 break // exit while loop, tree is balanced after 1 trinodeRestructure

$z = \text{parent}(z)$

return w

- setHeight(z) = $1 + \max(z.\text{left}.\text{height}, z.\text{right}.\text{height})$
- tallerChild(v) returns the child of v with larger height
Insertion Example Continued

after inserting

after inserting
Inserting in AVL Tree, Summary

- After inserting into at node w, go up the tree, following ancestor path from w, checking if any node on this path has become unbalanced.

- If an unbalanced node is found, perform tri-node restructuring.
 - Tree becomes balanced and can return from insert right after trinode restructuring.

- Trace at most one path in the tree, performing constant number of operations at each node, thus insert is $O(\log n)$.