Notes on Complexity Analysis

1 Power Functions

For any \(a < b \) s.t. \(a \geq 1 \) and \(b \geq 1 \), it holds that \(n^b \) is not \(O(n^a) \). In other words, \(n^b \) has a larger growth rate than \(n^a \).

Proof:

Argue by contradiction. Suppose \(n^b \) is \(O(n^a) \). Then there exist positive constants \(n_0, c \) s.t.

\[
 n^b \leq c \cdot n^a, \quad \forall n \geq n_0
\]

Dividing both sides of the inequality by \(n^a \) we get:

\[
 n^{b-a} \leq c, \quad \forall n \geq n_0.
\]

Now \(b-a \) is a positive number since \(b > a \). This \(n^{b-a} \) is a function that increases in \(n \) and the above inequality cannot hold. To make the proof precise, take \(m = 1 + \max\{n_0, c^{\frac{1}{b-a}}\} \). Then \(m \geq n_0 \) and plugging it into the inequality above, we get a contradiction.

2 Exponent Functions

For any \(a < b \) s.t. \(a \geq 1 \) and \(b \geq 1 \), it holds that \(b^n \) is not \(O(a^n) \). In other words, \(b^n \) has a larger growth rate than \(a^n \).

Proof:

Argue by contradiction. Suppose \(b^n \) is \(O(a^n) \). Then there exist positive constants \(n_0, c \) s.t.

\[
 b^n \leq c \cdot a^n, \quad \forall n \geq n_0
\]

Dividing both sides by \(a^n \) we get:

\[
 \left(\frac{b}{a}\right)^n \leq c, \quad \forall n \geq n_0.
\]

This cannot hold since \(\left(\frac{b}{a}\right)^n \) is a function that increases with \(n \), due to the fact that \(\frac{b}{a} > 1 \). To make the proof precise, \(m = 1 + \max\{n_0, \log_a c\} \) and we get a contradiction.