CS 3305

Memory Management III

Lecture 19
Page Table Implementation
Agenda

- Translation Lookaside buffer (TLB)
- Protection and Shared Pages
- Dealing with Large Page Tables
Implementation of Page Table

- The simplest approach is to have the page table implemented as a set of dedicated registers
- Note: Not feasible to keep page table in registers
 - Why? Page tables can be very large
 - Would be very expensive
Implementation of Page Table

- Each process has a page table
- Page table is kept in main memory
- **Page-table base register** (PTBR) points to the page table
- During a context switch, changing page tables requires changing PTBR
Implementation of Page Table

Solution: Use a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)
TLB
TLB

- Associative memory - parallel search
- Address translation \((p, d)\)
 - If \(p\) is in associative memory, get frame number out
 - Otherwise get frame number from page table in memory

<table>
<thead>
<tr>
<th>Page #</th>
<th>Frame #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paging Hardware With TLB

CPU

logical address

p d

page number frame number

TLB

TLB hit

f d

physical address

physical memory

TLB miss

page table
The TLB contains only a few of the page-table entries.

When a logical to physical address is requested by the CPU its page number is presented to the TLB.

If found the frame number is immediately available (TLB Hit)
TLB

- If page number is not in TLB then a **TLB miss** occurs
 - The page table is consulted
 - The page number and frame number is added to the TLB
 - If the TLB is full then one of the entries is replaced
 - Example replacement policy:
 - Least Recently Used (LRU)

- A high hit rate has a high impact can dramatically reduce lookup time
Effective Access Time

- Hit ratio (percentage of times that a particular page is found in the TLB) = 80%

- TLB hit:
 - Time to get data: 120

- TLB miss:
 - Time to get data: 220

- Effective access time:
 - $0.80 \times 120 + 0.2 \times 220 = 140$
Effective Access Time

- Assume hit ratio is 98% (typical)
- Effective access time:
 - \(0.98 \times 120 + 0.02 \times 220 = 122\)
Protection and Shared Pages
Protection

- Memory protection implemented by associating protection bit with each frame
- One protection bit can define a page to be read-write or read-only
Shared Pages Example
Dealing with Large Page Tables
Structure of the Page Table

- Typically systems have large logical address spaces
- Page table could be excessively large
- Example:
 - 32-bit logical address space
 - The number of possible addresses in the logical address space is 2^{32}
 - 20 for page numbers + 12 for each page size
 - Page size is 4 KB (4096 bytes or 2^{12})
 - Number of pages is 2^{20} (20 bits for page number)
 - Page table may consist of up to 1 million entries
- Take away message: Page table could be large
Large Page Table: Two-Level Page-Table Scheme

- Page table is also paged
- Need to be able to index the outer page table