CS3340 Analysis of Algorithms

Instructor Dr. Kaizhong Zhang
Office MC 372
Tel. Ext. 83826
Email kzhang<at>uwo.ca

Home Page owl.uwo.ca/portal and www.csd.uwo.ca/courses/CS3340b/
• **Textbook:**

 Algorithm Design and Application (2014)
 by M.T. Goodrich and R. Tamassia

• **Assignments:**

 3 assignments, 10 % each
 all three will involve some programming
 use Java, C or C++
 should be independent work

• **Examinations:**

 Midterm Exam, 25%
 Final Exam, 45%
 close-book exams
Goals of the course

• Survey important data structures and algorithms to help us design efficient programs (software)

• Introduce mathematical techniques for the analysis of algorithms
Synopsis

- **Algorithms**: precisely stated general problem-solving methods suitable for computer implementation
- **Data structures**: methods of organizing data involved in computation

- They are central objects of study in computer science
- They go hand-in-hand: neither can be studied fruitfully without knowledge of the other
World of algorithms

- Sequential algorithms
- Parallel algorithms:
 many computers or processes working concurrently
 - synchronously: all computers working together to solve a problem such as sorting
 - asynchronously: computers working independently usually on a network (distributed database systems)
- Randomizing algorithms:
 flip a coin, use outcome wisely
- Approximation algorithms:
 find good approximation in polynomial time
(... continued)

- Computational geometry:
 very useful for robotics

- Computational biology algorithms:
 solving molecular biology problems with computational methods

- Genetic algorithms:
 use mutation, splicing and other genetic principles for optimization

- DNA computing algorithms:
 used for computation by solely manipulating DNA strands

- etc.
Topics

• Induction, order of magnitude, solving recurrence relations.
• Binary trees. Basic set operations (search, insert, delete, intersection, union). Heaps.
• red-and-black trees: simplest B-tree.
• Sorting. Various sorting methods: quicksort, mergesort, heapsort, etc. Lower bounds on sorting. Selection.
• String matching and sequence comparison. Huffman coding.
• Union-find.
• Graph algorithms:
 depth-first search, cycles, topological sort, shortest paths, transitive closure, spanning trees, connected components, maximum flow.
• Algorithms design techniques:
 divide-and-conquer, dynamic programming, analysis of recurrences
• NP-completeness
• Parallel algorithms