CS3340 Analysis of Algorithms

Instructor: Dr. Kaizhong Zhang
Office: MC 372
Telephone: Ext. 83826
Course Email: cs3340b<at>uwo.ca
Home Page: owl.uwo.ca/portal and www.csd.uwo.ca/courses/CS3340b/
• **Textbook:**

 Introduction to Algorithms (third edition, 2009)
 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,
 Algorithm Design and Application (2014)
 by M.T. Goodrich and R. Tamassia

• **Assignments:**

 3 assignments, 8 % each
 all three will involve some programming
 use Java, Python, or C++
 should be independent work

• **Examinations:**

 Midterm Exam, 31%
 Final Exam, 45%
 Closed book exams, allowing one 8.5x11 information sheet
• Assignment late penalty

+ The late penalty percentage: \(\text{round}(2^{(\text{days}+1)/5}) \times 5 \)

<table>
<thead>
<tr>
<th>1 day</th>
<th>2 days</th>
<th>3 days</th>
<th>4 days</th>
<th>5 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>30%</td>
<td>65%</td>
</tr>
</tbody>
</table>

+ After five days, the penalty will be 100% unless you have either a self-reported absence or a recommendation from an academic advisor.
• **Academic Consideration and Self-Reported Absence for Assignment**

 + **Academic consideration:**

 – In Assignment Submission Form,

 * State clearly the days recommended by the academic advisor
 * Include a text copy of the email from the advisor
 * If the number of days recommended is more than five, please send an email to cs3340b<at>uwo.ca after your assignment submission to inform our TAs about your late submission.

 + **Self-reported absence:**

 – In Assignment Submission Form,

 * State clearly the two days requested
 * Include a text copy of the email from UWO

• **Do not need to contact instructor**

• **Will not reply inquiry**
Goals of the course

- Survey important data structures and algorithms to help us design efficient programs (software)
- Introduce mathematical techniques for the analysis of algorithms
- Concentrate on the logical process that leads to the creation of the algorithm, rather than the algorithm itself
- The techniques for evaluating the performance of algorithms would be useful in this process
- The idea is that Computer Science is more than mere recipes; it is about computational thinking
Synopsis

- **Algorithms**: precisely stated general problem-solving methods suitable for computer implementation
- **Data structures**: methods of organizing data involved in computation

- They are central objects of study in computer science
- They go hand-in-hand: neither can be studied fruitfully without knowledge of the other
World of algorithms

• Sequential algorithms

• Parallel algorithms:
 many computers or processes working concurrently
 - synchronously: all computers working together to solve a problem such as sorting
 - asynchronously: computers working independently usually on a network (distributed database systems)

• Randomizing algorithms:
 flip a coin, use outcome wisely

• Approximation algorithms:
 find good approximation in polynomial time
• Computational geometry:
 very useful for robotics

• Computational biology algorithms:
 solving molecular biology problems with computational methods

• Genetic algorithms:
 use mutation, splicing and other genetic principles for optimization

• DNA computing algorithms:
 used for computation by solely manipulating DNA strands

• etc.
Topics

- Induction, order of magnitude, solving recurrence relations.
- Sorting. Various sorting methods: quicksort, mergesort, heapsort, etc. Lower bounds on sorting. Selection.
- String matching and sequence comparison. Huffman coding.
- Union-find.
- Graph algorithms:
 depth-first search, cycles, topological sort, shortest paths, transitive closure, spanning trees, connected components, maximum flow.
Algorithms design techniques:
 divide-and-conquer, dynamic programming, analysis of recurrences

• NP-completeness

• Parallel algorithms