Purpose of Design and Analysis of Algorithms

- Purpose of Design: Efficiently solve our problem
- Purpose of Analysis: Predict the behavior of an algorithm without implementing it on a specific computer

How?
- How to measure efficiency?
- How to use the measure to predict (approximately) the behavior?
What does “efficient” mean?

• Economical in time and in space.

 Time is often (but not always) more important these days.

• We count time by counting the number of steps a program goes through to solve a problem, assuming that each step takes no more than a constant time.

Example: I’m thinking of a number between 1 and 1000. Ask me yes/no questions to try to figure it out.

Strategy 1: Is it 1? Is it 2?...

Takes 999 questions in the worst case!

Strategy 2: Is it > 500? If yes, is it > 750? (If no, is it > 250?)...

Takes 10 questions in the worst case!
(Similar to binary search.)
† Not only that, but how many more questions are needed if I can choose between 1 and 2000?
 With strategy 1, 1000 more!
 With strategy 2, 1 more!
† Incidentally, how would you solve this problem in 10 steps without feedback until you asked all 10?

- We try to relate time to the size of the problem. In this case, time is the number of questions. Size is the size of the interval.
- For strategy 1, \(T(n) = n \).
- For strategy 2, \(T(n) = \log_2(n) \).
- Doubling problem size doubles the time for strategy 1, but only increases time by one for strategy 2.
How to relate time to the size of a problem?

- Very often, the running time depends not on exact input but only on the size of the input, e.g., mergesort.

- When running time is really a function of the particular input, not just of the size of the input, e.g. binary search tree operations:
 † worst case: the maximum, over all inputs of size \(n \), of the running time on the input
 † average case: the average, over all inputs of size \(n \), of the running time on the input.

- We usually use worst case.
 Average case is hard to determine and also depends on the distribution of inputs.
Order of Magnitude Notation

- Suppose we analyzed an algorithm for a particular machine and a new one is wheeled in that is faster up to three times. We would then have to redo our analysis.
- Instead we choose to be lazy and ignore factors of 3, 5, indeed any constant.
- When we say the time for an algorithm is $O(\log n)$ (“big oh of log n” or “oh of log n”) we could mean it takes time 30 log(n), 9999 log(n), and so on.
- For real applications, the constant does matter, but the order of magnitude notation is a good first cut, and usually lets us choose the right algorithm.

Example: $1000 \, n$ versus $0.0001 \, n^2$

- For any input smaller than 10^7, second algorithm ($0.0001 \, n^2$) is faster. But eventually, the first algorithm is faster.
Capture intuition as follows:

Let $T(n)$ be the time of a particular algorithm for input of size n.

$$T(n) = O(g(n)) \text{ iff } \exists c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \quad T(n) \leq c \cdot g(n).$$

- We don’t care what constant is on $g(n)$, as long as for values greater than n_0, $c \cdot g(n)$ dominates $T(n)$. Therefore, $T(n)$ grows no faster than $g(n)$.

- c – lets us ignore constant terms
- n_0 – lets us ignore a few particular values.
Example

The function $T(n) = 3n^3 + 2n^2$ is $O(n^3)$.

Let $n_0 = 1$ and $c = 5$.

For $n \geq n_0$ we have $3n^3 + 2n^2 \leq 5n^3$.

- We could also say that $T(n)$ is $O(n^4)$ since we can let $n_0 = 1$, $c = 5$ and for $n \geq 0$ we have $3n^3 + 2n^2 \leq 5n^4$.

This is a weaker statement than saying it is $O(n^3)$.
Example

Prove 3^n is not $O(2^n)$.

Proof: Suppose there were constants n_0 and c such that for all $n \geq n_0$

$$3^n \leq c \cdot 2^n.$$

Then, $c \geq (3/2)^n$ for all $n \geq n_0$.

But $(3/2)^n$ gets arbitrarily large as n gets larger.

So no constant c can exceed $(3/2)^n$ for all $n \geq n_0$ □
Several commonly used functions

$O(1)$
$O(\log_2(n))$
$O(n)$
$O(n \log_2(n))$
$O(n^2)$
$O(n^3)$
$O(2^n)$
Some properties of \(O(\) \)

- If \(S(n) = O(f(n)) \) and \(T(n) = O(g(n)) \) then
 \[
 \begin{align*}
 \uparrow S(n) + T(n) & = O(f(n) + g(n)). \\
 \uparrow S(n) + T(n) & = O(\max(f(n), g(n))).
 \end{align*}
 \]

- \(\lg n = O(n^\alpha), \quad \alpha > 0 \)
 (any logarithmic function grows slower than a polynomial function)

- \(n^k = O(2^n) \)
 (any polynomial function grows slower than an exponential function.)
Warning

$O(\cdot)$ does not always make sense

- Run only a few times (writing, debugging dominates)
- Only on small input
- Time efficient uses too much space
- Accuracy and stability are more important
Sometimes, we also know that $T(n)$ grows no slower than a certain function $g(n)$. (Note: in worst case or average case)

Then we say $T(n) = \Omega(g(n))$ (Omega of $g(n)$)

- More formally,

Let $T(n)$ be the time of an algorithm for input of size n.

$$T(n) = \Omega(g(n)) \text{ iff }$$

$\exists c > 0, \exists n_0 > 0$ such that $\forall n \geq n_0,$

$$T(n) \geq c \cdot g(n).$$
• Note the similarity between $O()$ and $\Omega()$ notations.
• $O()$ corresponds, loosely, to upper bound.
• $\Omega()$ corresponds, loosely, to lower bound.
• Note: there is a better definition for $\Omega()$: $\tilde{\Omega}()$, textbook pp. 62.
\[\Theta(\) \] notation

- If \(T(n) = O(f(n)) \) and \(T(n) = \Omega(f(n)) \) then \(T(n) = \Theta(f(n)) \).

- \(T(n) = \Theta(f(n)) \), iff
 \[
 \exists c_2 > c_1 > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\
 c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n).
 \]

- If \(T(n) = \Theta(f(n)) \) we say \(T(n) \) and \(f(n) \) are of the same order of magnitude.

- Example: in mergesort \(T(n) = \Theta(n \cdot \log n) \).

- The \(O, \Omega, \Theta \) correspond loosely to \(\leq, \geq \) and \(= \).

- Read textbook for more precise meanings of \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).

- Read textbook for \(o(\) \) and \(\omega(\) \) notations.
Example

Insertion Sort: upper bound O

- Array $[1, \ldots, n]$ of n elements
- Assume $A[1, \ldots, i]$ are sorted.

 To insert $A[i + 1]$ we need at most i comparisons and $i + 1$ data movement.

- This implies $T(n) \leq c \cdot n^2$ which means $T(n) = O(n^2)$
Example

Insertion sort: lower bound: Ω

- Array $[1, \ldots, n]$ of n elements
- Input: $A[n]$ is smallest, $A[n-1]$ is second smallest and so on. For worst case, try to pick a worst input.
- Steps by Insertion Sort: $n(n-1)/2$
- $\Omega(n^2)$ for insertion sort

We already know $T(n) = O(n^2)$

Conclusion: $T(n) = \Theta(n^2)$
Sometime we can prove lower bound for a problem (not for an algorithm); then any algorithm for this problem has that lower bound.

- Worst case sorting by comparison is $\Omega(n \cdot \log n)$.
- Worst case search in an sorted array is $\Omega(\log n)$.
- Worst case search in an unsorted array is $\Omega(n)$.
- Usually it is hard to show lower bound for a problem.

- Meaning:
 † This is the best (within a constant)
 † You can quit searching for a better one!
• Occasionally it is easy.

† Searching in unsorted arrays.

Theorem 1. The lower bound of time complexity for searching a value in an unsorted array of size \(n \) is \(\Omega(n) \).

Proof. Need to check every element at least once.

† What does this mean?

Once you find an algorithm with time complexity \(O(n) \) for searching in unsorted arrays, you stop looking for a better algorithm (if the constant ratio is not your concern)!
Summary

- Running time (time complexity) = number of steps.

- Relate running time to the size of the input:
 † Worst case
 † Average case

- Upper bound $O()$: $T(n) = O(f(n))$
 means $T(n) \leq c \cdot f(n)$ for some $c > 0$ and $n \geq n_0$

- Lower bound $\Omega()$: $T(n) = \Omega(f(n))$
 means $T(n) \geq c \cdot f(n)$ for some $c > 0$ and $n \geq n_0$

- $\Theta()$: upper bound equals lower bound