Binary Search and Variations

- **Idea:** cut search space in half (about half) by asking only one question.
- Pure binary search

\[x_1, x_2, \ldots, x_n \] is a sequence of real numbers such that

\[x_1 \leq x_2 \leq \cdots \leq x_n \]

Problem: Given a real number \(z \), we want to find whether \(z \) appears in the sequence, and if it does, to find an index \(i \) such that \(x_i = z \).

Solution: binary search!
Binary search:

Question: “Is $x_{n/2} < z$?”

Yes: binary search range becomes $x_{n/2+1}, \ldots x_n$

No: binary search range becomes $x_1, \ldots, x_{n/2}$

Complexity: $O(\log_2 n)$.
Binary search in a cyclic sequence

Definition. A sequence x_1, x_2, \ldots, x_n is said to be **cyclically sorted** if the smallest number in the sequence is x_i for some unknown i, and the sequence

$$x_i, x_{i+1}, \ldots, x_n, x_1, x_2, \ldots, x_{i-1}$$

is sorted.

The Problem: Given a cyclically sorted list, find the position of the minimum element in the list (we assume elements are distinct).
Solution: For any two numbers \(x_k, x_m \), such that \(k < m \), compare \(x_k \) with \(x_m \).

1. If \(x_k < x_m \) then \(i \) cannot be in the range \(k < j \leq m \) (\(k \) is possible)
2. If \(x_k > x_m \) then \(i \) must be in the range \(k < j \leq m \)

\(x_1, x_2 \cdots x_{i-1}, x_i \cdots x_n \)

\(x_1, x_2 \cdots x_{i-1}, x_i \cdots x_n \)

† Is \(x_{n/2} < x_n \)?

Yes: search range \(1 \ldots n/2 \). No: search range \(n/2 + 1, \ldots n \).

† Find the index of the smallest element in \(O(\log n) \) time.
Binary search for a special index

The Problem: Given a sorted sequence of distinct integers \(a_1, a_2, \ldots, a_n\), determine whether there exists an index \(i\) such that \(a_i = i\).

If key is not given, binary search cannot be done. The principle still works.

Compare: \(a_{n/2}\) with \(n/2\)

\[
\begin{align*}
a_{n/2} &= n/2 & \text{found!} \\
a_{n/2} &< n/2 \implies a_{n/2-1} &\leq a_{n/2} - 1 < n/2 - 1 \\
&\implies a_{n/2-1} &< n/2 - 1, \ldots, a_1 < 1 \\
&\implies \text{search range: } n/2 + 1, \ldots, n \\
a_{n/2} &> n/2 \implies a_{n/2+1} &> n/2 + 1, \ldots, a_n > n \\
&\implies \text{search range: } 1, \ldots, n/2 - 1
\end{align*}
\]

Can find index \(i\) such that \(a_i = i\) in \(O(\log(n))\) time.
Sometimes we *double the search space* instead of halving it.

Consider binary search with size of the sequence unknown!
- Try to find x_i such that $z \leq x_i$,
 then binary search in the range $1, \ldots, i$.

More specifically,

† compare z to x_j, $j \geq 1$
† Assume $x_j < z$, $j \geq 1$, try z and x_{2j}
† If $z \leq x_{2j}$ then $x_j < z \leq x_{2j}$
- Can find z in $O\left(\log j\right)$ additional comparisons

If i is the smallest index such that $z \leq x_i$ then:

$O\left(\log i\right)$ to find an x_j such that $z \leq x_j$
$O\left(\log i\right)$ to find x_i.
Interpolation Search

In binary search, the search space is always cut in half (which guarantees the logarithmic time).

However, if we find a value that is very close to the search number z, it seems reasonable to continue the search in that ”neighborhood” instead of blindly going to the next half point.

Example: open a book, try to find a certain page. We want to find page 200 in a 800 page book. We do not start from about half. We try about one-fourth.

- Search range $l, \ldots r$
 - If z is close to x_l we should choose something near l.
 - We can use the ratio $d = [z - x_l]/(x_r - x_l)$
 - We next try $l + d(r - l)$.

- If $z - x_l \approx x_r - z$, this is binary search

- For random keys, interpolation search uses less than $lg(lg(N)) + 1$ comparisons.

- Can be used for very large n.
Interpolation search