Dynamic Programming

- Dynamic Programming is a generic method to design algorithms. It constructs the solution from solutions of “(slightly) smaller” problems.
- E.g. Fibonacci number computation. $F(n) = F(n - 1) + F(n - 2)$.
- However, the recurrence relation is not so obvious in many problems.
- We will consider three examples.
 - Coin Selection
 - Knapsack
 - Longest Common Subsequence
Coin Selection

- **Problem** Sufficient coins with \(k \) values, \(v_1 < v_2 < \ldots < v_k \). A value \(N \). We want to find a collection of coins so that their values total up to \(N \). There may be multiple coins with the same value in the collection.

- **Naive Solution:**
 For every possible \(0 \leq c_1, c_2, \ldots, c_k \leq \frac{N}{v_1}, \)
 check whether \(N = c_1 v_1 + \ldots + c_k v_k \).

- Time Complexity: There are \((\frac{N}{v_1})^k \) possibilities, each requires \(O(k) \) time to check.
 Therefore, the time complexity is \(O \left((\frac{N}{v_1})^k \times k \right) \).

- Exponential to \(k \). Not a good solution.

- Here, the recurrence relation is not obvious.
Induction:

- Let $S(N)$ be one collection of coins that total up to value N.
- Instead of computing a solution $S(N)$ directly, we try to compute $S(N)$ from solutions of $S(i)$, $0 \leq i < N$.

$$S(N) = \text{null}$$

for j from k to 1 do
 if $S(N - v_j) \neq \text{null}$
 $S(N) = S(N - v_j) + (v_j)$
 break

- If $S(i)$ has been correctly computed for $0 \leq i < N$, then the above pseudo-code computes $S(N)$ correctly.
Dynamic Programming:

Algorithm DP:
Input: \(v_1, \ldots, v_k; N \).
Output: A collection of values that total up to \(N \).

1. \(S[0] = () \)
2. for \(i \) from 1 to \(N \)
3. \(S[i] = null \)
4. for \(j \) from \(k \) to 1 do
5. if \(i - v_j \geq 0 \) and \(S[i - v_j] \neq null \)
6. \(S[i] = S[i - v_j] + (v_j) \)
7. break
8. output \(S[N] \)

- Correctness of the algorithm:
 1. \(S[0] \) is correct.
 2. If \(S[i] \) is correct for \(0 \leq i < n \), then \(S[n] \) is also correct.

Therefore, by induction, \(S[i] \) is a correct solution for every \(i \). Hence \(S[N] \) is a correct solution for value \(N \).
• Time complexity:
The major part of the running time is spent on the block consisting of line 5,6,7, which will repeat kN times. Suppose each repeat takes time T. The total time complexity is $O(kNT)$.

• Space complexity:
We need a linked list for each $S[i]$, $i = 1, \ldots, N$. Therefore, the space complexity is N linked list.

• The above algorithm and analysis show the basic idea of DP. However, DP is usually done with two steps: one step fills the DP table, and the other step is a backtracking step to construct the solution.
Dynamic Programming with Backtracking

- The following algorithm determines whether a value N can be achieved:

Algorithm DP:

Input: $v_1, \ldots, v_k; N$.
Output: true or false.
1. $S[0] \leftarrow true$
2. for i from 1 to N
3. $S[i] \leftarrow false$
4. for j from k to 1 do
5. if $i - v_j \geq 0$ and $S[i - v_j]$
6. $S[i] \leftarrow true$
7. break
8. output $S[N]$

- To find the actual collection of coins, we need backtrack in the DP array $S[0..N]$, as follows:
• The Pseudo-code (Suppose $S[N]$ is true.)

Backtrace(N, $S[0..N]$)
1. $i \leftarrow N$
2. while($i > 0$)
3. for j from k to 1 do
4. if $i - v_j \geq 0$ and $S[i - v_j]$
5. print(v_j)
6. $i \leftarrow i - v_j$
7. break //break for loop

• Correctness:
If $S[i]$ is true, there must be j s.t. $S[i - v_j]$ is true. We print v_j and then the rest of the while loop will print the collection of coins that total up to $i - v_j$. Hence the backtracking is correct if $S[0..N]$ is correct.

• Time Complexity: DP takes $O(kN)$ time. Backtracking takes $O(kN)$ time. In total $O(kN)$ time.

• Space Complexity: DP takes $O(N)$ bits. Backtracking takes $O(1)$. Total space complexity is $O(N)$.

• Here N is not the problem size!!!
Exercise

• Does our algorithm find the minimum number of coins that total up to N?
 Positive evidence: we try the coin with the largest value first.
 Negative evidence: using the largest value coin is a good choice at the current step, but it may screw up the future steps.

• If yes, prove it.

• If no, give a counter-example, and try to design an algorithm to find the minimum number of coins.
Knapsack problem

- Knapsack problem (pp. 425 in the textbook) is an extended version of our previous “Coin Selection” problem.

- Suppose a thief enters a store and has a knapsack with a capacity of W (i.e., can hold up to W kilograms).

- There are n items to choose from, with each item having weight w_i and value v_i.

- The idea is to fill the knapsack with as much weight as possible and maximize the value of the load. Items cannot be broken down.

- Here all w_i are integers.

- This again can be solved by Dynamic Programming. Consider an optimal solution. If we remove item j from the load, then the remaining load must be the most valuable load possible that uses weight $W - w_j$ from the remaining $n - 1$ items.
• Let $c[i, w]$ be the value of the optimal solution for items 1, ..., i with maximum weight w. Then

$$c[i, w] = \begin{cases}
0, & \text{if } i = 0 \text{ or } w = 0 \\
 c[i - 1, w], & \text{if } w_i > w \\
 \max(v_i + c[i - 1, w - w_i], c[i - 1, w]), & \text{else}.
\end{cases}$$

DP:
1. for i from 1 to n
2. $c[i, 0] \leftarrow 0$
3. for w from 1 to W
4. $c[0, w] \leftarrow 0$
5. for i from 1 to n
6. for w from 1 to W
7. if $w_i > w$
8. $c[i, w] \leftarrow c[i - 1, w]$
9. else
10. $c[i, w] \leftarrow \max\{v_i + c[i - 1, w - w_i], c[i - 1, w]\}$.
11. output $c[n, W]$.
Backtracking

- Backtracking assumes $c[i, w]$ has been computed for all valid i and w.

- Backtrace($c[0..n, 0..W]$)
 1. $i \leftarrow n$, $w \leftarrow W$.
 2. while $i \neq 0$ and $w \neq 0$
 3. if $w_i > w$
 // item i is not used
 $i \leftarrow i - 1$
 4. else if $v_i + c[i - 1, w - w_i] < c[i - 1, w]$
 // item i is not used
 $i \leftarrow i - 1$
 5. else
 // item i is used
 print(i)
 6. $i \leftarrow i - 1$, $w \leftarrow w - w_i$

- Time complexity: Filling DP table $O(nW)$. Backtracking $O(n)$. Total $O(nW)$.

- Space complexity: $O(nW)$.
Longest Common Subsequence

- Are the following two strings similar?

 ACCGGTCGAGGCAGCGGAAGCCCGGCCGAA GTCGTTGGAATGCGTTGGCTCTGTAAGG

- Hamming distance: No, they are not.

 ACCGGTCGAGGCAGCGGAAGCCCGGCCGAA
 || | || || | |
 GTCGTTGGAATGCGTTGGCTCTGTAAGG

- In another sense, using LCS (pp. 390 in the textbook), they are:

 ACCGGTCGAGGCAGCGGAAGCCCGGCCGAA GCCG GC C G AA
 || || | || || || | | |
 GTCGTTGGGAATGCGTTGGCTCTGTAAGG

- In Bioinformatics, when people compare two DNA (or protein) sequences, hamming distance cannot be used because one sequence may be resulted from inserting a few letters into another.
Longest Common Subsequence

• Instead, measurements like edit distance, sequence alignment, or longest common subsequence are used. Sequence alignment is the most common.

• We introduce the longest common subsequence since it is easier to understand.

• We are given two sequences of characters, A and B, $A = a_1a_2\ldots a_n$, $B = b_1b_2\ldots b_m$. (Assume that the characters come from a finite alphabet.) We want to find the longest common subsequence.

• That is, $a_{i_1}a_{i_2}\ldots a_{i_k} = b_{j_1}b_{j_2}\ldots b_{j_k}; i_1 < i_2 < \ldots < i_k, j_1 < j_2 < \ldots < j_k$; and k is maximized.

• We again use Dynamic Programming to solve this problem.
• Let us look at a_n and b_m. There are two cases:
 • Case 1. $a_n = b_m$. Then $LCS(A, B)$ is $LCS(a_1 \ldots a_{n-1}, b_1 \ldots b_{m-1}) + a_n$.
 • Case 2. $a_n \neq b_m$. Then $LCS(A, B)$ is either the $LCS(a_1 \ldots a_{n-1}, B)$ or $LCS(A, b_1 \ldots b_{m-1})$, depending on which one is longer.

• Let $L(i, j)$ be the length of $LCS(a_1 \ldots a_i, b_1 \ldots b_j)$. Then
 \[
 L(i, j) = \begin{cases}
 1 + L(i-1, j-1), & a_i = b_j \\
 \max\{L(i-1, j), L(i, j-1)\} & a_i \neq b_j
 \end{cases}
 \]

• Pseudo-code
 1. for i from 0 to n
 2. \hspace{1cm} $L[i, 0] \leftarrow 0$,
 3. for j from 0 to m
 4. \hspace{1cm} $L[0, j] \leftarrow 0$,
 5. for i from 1 to n
 6. \hspace{1cm} for j from 1 to m
 7. \hspace{2cm} if $a_i = b_j$
 8. \hspace{3cm} $L(i, j) \leftarrow 1 + L(i-1, j-1)$
 9. \hspace{2cm} else
 10. \hspace{3cm} $L(i, j) \leftarrow \max\{L(i-1, j), L(i, j-1)\}$
Exercise

• Write the backtracking pseudo-code for the LCS problem.

• In the textbook (pp. 394), in addition to an array $c[i, j]$ (the same as our $L[i, j]$), an array $b[i, j]$ is used to assist the backtracking. Is it necessary?

• Do we need another array for backtracking?

• The time and space complexity of the DP for LCS.

• Read the other dynamic programming algorithms introduced in Chapter 15 of the textbook.