• Very important problem, most extensively studied
• In many applications, sorting consumes a large proportion of computing time!
• What sorting algorithms have you learned?
 – Bucket Sort and Radix Sort
 – Insertion Sort and Selection Sort
 – Merge Sort
 – Quick Sort
 – Heap Sort
• We will review the above algorithms, do more detailed analysis and prove lower bounds
Bucket Sort

• “Mailroom sort”: allocate a sufficient number of boxes – buckets – and put each element in the corresponding bucket.

• Works very well only for elements from a small, simple range that is known in advance
 † e.g. sorting letters by state (by province)
 † e.g. sorting letters by zip code – we need \(26^3 \cdot 10^3\) buckets!!

• Input \(x_1, x_2, \ldots, x_n, 1 \leq x_i \leq m\) and \(x_i\) are distinct integers.
 Allocate \(m\) buckets.
 For each \(i\), we put \(x_i\) in the bucket corresponding to its value.
 Finally, we scan the buckets in order and collect all elements.

• Time and space complexity:
 time: \(O(n + m)\): \(n\) for sort \(n\) elements and \(m\) for final scan
 space: \(O(m)\): 1 unit for each bucket
 If \(m = O(n)\) then this is linear sorting
Radix Sort

• Natural extension of bucket sort.
• We want to reduce the number of buckets (we need more passes).
• Assume that the elements are large integers represented by k digits, and each digit is in the range 0 to $d - 1$.
• We use induction to show the algorithm.

Induction Hypothesis : We know how to sort elements of $< k$ digits

† Given elements with k digits, we first ignore the most significant digit (left-most digit) and sort the elements according to the rest of the digits by induction!
† Scan all the elements again and use bucket sort on the most significant digit with d buckets.
† Collect all the buckets in order.
Example: $n = 10, d = 10, k = 2$

Input: 36, 9, 0, 25, 1, 49, 64, 16, 81, 4

<table>
<thead>
<tr>
<th>(first pass)</th>
<th>(second pass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket</td>
<td>Contents</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1, 81</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>64, 4</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>36, 16</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9, 49</td>
</tr>
</tbody>
</table>

Append 10 queues of first pass: 0, 1, 81, 64, 4, 25, 36, 16, 9, 49 (input to second pass).
Append 10 queues of second pass: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81
Why does it work?

1. Two elements that are put in different buckets in the LAST step are in the right order
 - do not need induction
 - most significant digits determine the order

2. Two elements having the same most significant digit
 - By induction, they are in right order before the last step.
 - Make sure that elements put in the same bucket REMAIN in the same order
 - using a queue for each bucket
 - appending the d queues at the end of a stage to form one global queue of all elements

 (This shows how to use induction to make sure the algorithm is correct.)
Time complexity: $O(kn)$

- Initialize the queues: $O(d)$
- Put n elements into buckets: $O(n)$
- Append d queues: $O(d)$
- Therefore for one pass, total time is $O(n)$

Counting sort can be used to implement Radix Sort.
Counting Sort

Counting sort assumes that each of the n input is an integer in the range of 0 to k, for some k.

The input is in $A[1..n]$ and the output will be in $B[1..n]$.

We also use an array $C[0..k]$ for temporary space.

Counting-Sort(A, B, k)
1. for $i = 0$ to k
2. do $C[i] = 0$
3. for $j = 1$ to n
4. do $C[A[j]] = C[A[j]] + 1$
5. for $i = 1$ to k
6. do $C[i] = C[i] + C[i - 1]$
7. for $j = n$ downto 1
• An example that sorting is not based on comparison.
 – Lines 1 to 2 initialize array $C[]$.
 – Lines 3 to 4 calculate the number of integers in the input with value i for each i in the range of 0 and k.
 – Lines 5 to 6 calculate the correct location for the last integer with value i.
 – Lines 7 to 8 sort integers in array $A[]$ and put the result in array $B[]$.

• An important property of counting sort is that it is **stable**.
 – Integers with the same value appear in the output array exactly the same order as they do in the input array.
 – This is important in the application of counting sort.

• When $k = O(n)$, the sort runs in $\Theta(n)$ time.
Insertion Sort

• Assume we can sort \(n - 1 \) elements, then we can find the right place for the \(n \)'th element and insert it there.

• worst case:
 – data movement: \(i - 1 \) for the \(i \)'th iteration \(\implies \Omega(n^2) \)
 – comparisons: \(\Omega(n \log n) \)

• average case:
 – There are \(i \) positions where \(x \) (\(i \)th element) can go.
 – The probability that \(x \) belongs to any position is \(1/i \).

\[
\sum_{j=0}^{i-1} \frac{1}{i} j = \frac{1}{i} \left[i(i - 1)/2 \right] = \frac{i - 1}{2} \quad \text{ith step}
\]

\[
A(n) = \sum_{i=2}^{n} \left[\frac{i - 1}{2} \right] = O(n^2) \quad \text{total}
\]
Selection Sort

- find the maximum element, swap it with the last element.
- data movement: $O(n)$, 1 for each iteration
- comparisons: $O(n^2)$, i for ith largest

Insertion and Selection

<table>
<thead>
<tr>
<th>Method</th>
<th>Data movement</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n^2)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Selection</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

To improve insertion sort:
Use a data structure that supports search and also insertion, for example AVL trees or red-black trees. These methods require extra space though.

To improve selection sort:
Use a data structure that supports find max and also deletions (e.g. heap sort).
Mergesort

The merge process can be considered as an improvement of insertion sort.

- **Idea:** With the time to insert one element, we can insert many elements.

 Let $A = a_1, a_2, \ldots a_n$, $B = b_1, b_2, \ldots, b_m$ be sorted.

- We want to insert B into A

- We scan A from the left for the right position for b_1

- We can then continue, without going back, to scan for the right position for b_2 and so on.

- **Data movement:** copy them into a temporary array. Each element moves only once.

- $O(n + m)$ time

Mergesort: **Divide-and-conquer sorting**

Divide by half $O(1)$

Solve each half recursively $2T(n/2)$

Merge two sorted halves $O(n)$

Time: $T(n) = 2T(n/2) + O(n) \Rightarrow O(n \log n)$
QuickSort

Procedure Q-Sort(X, Left, Right)

begin

\[\text{if } \text{Left} < \text{Right} \text{ then} \]

\[\text{Middle} = \text{Partition}(X, \text{Left}, \text{Right}); \]

\[\text{Q-Sort}(X, \text{Left}, \text{Middle} - 1); \]

\[\text{Q-Sort}(X, \text{Middle} + 1, \text{Right}); \]

end

Partition

\[\dagger \text{ choose a pivot, } x_1 \]

\[\dagger \text{ use two pointers (indices) } L \text{ and } R \]

Initially, \(L \) points to the left end of the array and \(R \) points to the right end of the array.

The pointers move in opposite directions.
Induction hypothesis: At step k of the partition algorithm, pivot $\geq x_i$ for $i < L$ and pivot $< x_j$ for $j > R$.

1. If $L \leq R$ then
 - $x_L \leq$ pivot then $L \leftarrow L + 1$, or
 - $x_R >$ pivot then $R \leftarrow R - 1$
 - $x_L >$ pivot and $x_R \leq$ pivot then exchange x_L and x_R, and $L \leftarrow L + 1$, $R \leftarrow R - 1$

2. If $L > R$ exchange x_1 and x_R
 (2 = terminate condition)

By induction in step $k + 1$, we can keep induction hypothesis and move either L or R

Consequently, the pointers will eventually meet termination condition
How to choose a pivot?

- Choose a random element from the sequence is a good choice
- If the sequence is random, we can just choose the first element
- If we choose another element to be pivot, we can exchange it with the first element, then use our partition algorithm
Algorithm Partition(X, left, right);
Input: X (an array)
 left (the left boundary of array X)
 right (the right boundary of array X)
Output: X and middle, such that
 X[i] <= X[middle] for all i <= middle,
 X[j] > X[middle] for all j > middle.
begin
 pivot := X[left]; L := left; R := right;
 while L <= R do
 while X[L] <= pivot and L <= right do
 L := L+1;
 while X[R] > pivot do
 R := R-1;
 if L < R then
 exchange X[L] and X[R]; L := L+1; R := R-1;
 middle := R;
 exchange X[left] and X[middle];
 return middle;
end;
Worst case

† The sequence is in the correct order.

\[W(n) = (n - 1) + W(0) + W(n - 1), \]
\[W(0) = W(1) = 1. \]

((n − 1) for partition, since the sequence is sorted we will have one empty sequence and one sequence with (n − 1) elements.)

Example: 3, 7, 9, 18, 20, 21

\[W(n) = (n - 1) + (n - 2) + 2W(0) + W(n - 2) \]
\[\ldots \]
\[= \sum_{i=1}^{k} + (n - i) + kW(0) + W(n - k) \]
\[= \sum_{i=1}^{n-1} (n - i) + (n - 1)W(0) + W(1) \]
\[= \sum_{i=1}^{n-1} i + n = n(n - 1)/2 + n \approx n^2 \]
Average Case

• Assume that all keys are distinct. All permutations are equally likely.
• Each x_i has the same probability of being selected as the pivot.
• Running time $T(n)$ of quicksort if the ith smallest element is the pivot is
 \[
 T(n) = (n - 1) + T(i - 1) + T(n - i)
 \]

 - $n - 1$ for partition
 - $T(i - 1)$ for sequence less than pivot
 - $T(n - i)$ for sequences greater than pivot
• Since x_i has same probability to be pivot the average running time is
 \[
 A(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} [A(i - 1) + A(n - i)],
 \]
 \[
 A(0) = 0, \ A(1) = 1.
 \]
Note

\[\sum_{i=1}^{n} A(n - i) = A(n - 1) + A(n - 2) + \cdots + A(0) = \]

\[\sum_{i=1}^{n} A(i - 1). \]

which implies

\[A(n) = (n - 1) + \frac{2}{n} \sum_{i=1}^{n} A(i - 1) \quad (1**) \]

(recurrence with full history)
(1**) involves many $A(i)$’s in $A(n)$. We use a ”trick” to reduce this to first order recurrence.

$$nA(n) = n(n - 1) + 2 \sum_{i=1}^{n} A(i - 1) \quad (2**)$$

$$(n - 1)A(n - 1) = (n - 1)(n - 2) + 2 \sum_{i=1}^{n-1} A(i - 1) \quad (3**)$$

Now subtract (3**) from (2**):

$$nA(n) - (n - 1)A(n - 1) =$$

$$n(n - 1) - (n - 1)(n - 2) + 2A(n - 1)$$

$$A(n) = \frac{n+1}{n}A(n - 1) + \frac{2(n - 1)}{n} \quad (4**)$$
Let $B(n) = A(n)/(n + 1)$
(Second trick use a substitution.)

\[
B(n) = B(n - 1) + 2(n - 1)/(n + 1)n, \quad n > 1.
\]

\[
B(n) = 2 \sum_{i=2}^{n} \frac{i - 1}{(i + 1)i} + B(1)
\]

\[
B(n) \approx 2 \sum_{i=1}^{n} \frac{1}{i + 1} \approx 2 \sum_{i=1}^{n} \frac{1}{i}
\]

\[
\sum_{i=1}^{n} \frac{1}{i} \approx \ln(n) = \frac{\log n}{\log e}
\]

\[
B(n) \approx \frac{2}{\log e} \log n \approx 1.4 \log n
\]

Conclusion

\[
A(n) = 1.4(n + 1)\log n
\]

\[
A(n) = \Theta(n\log n)
\]
• From the appearance of the algorithm, it seems that we do not need any extra space

• However, recursions are implemented by using run-time stacks
 Each call: a pair of indices of the array has to be stacked.

• There are at most \(n - 1 \) calls, there are at most \((n - 1) \) pair of indices to be stacked.

• Space complexity: \(O(n) \) (extra space)

• If we use explicit stack, we can guarantee \(O(\log n) \) extra space
Improvements of the quicksort algorithm

1. Improve the selection of the pivot
 - choose a random index between L and R.
 - choose the median of x_L, x_R and $x_{(L+R)/2}$
 (We need to do extra work, but it is worth it.)

2. Use a simple algorithm for small size.
 - e.g. when size is less than 15, use insertion sort
 - avoid problem of stacking overhead (”choose the base of induction wisely”)

3. Use explicit stacking : avoid overhead of system (run-time) stack

4. Minimize the size of the stack: always stack the larger part first (solve smaller part first).

5. Put pivot into register, for each comparison only one data movement from memory.
Heapsort

• Like selection sort, heapsort is in place
• Like mergesort, heapsort is $O(n \log(n))$
• heapsort combines the better features of the two sorting algorithms.
• heapsort
 – fast sorting algorithm
 – not quite as fast as quicksort
 but not much slower
 – unlike quicksort, its performance is guaranteed
Heap Sort

• Build Heap

• consider the largest element
 – Swap $A[1], A[n]$
 – $A[n]$ now has correct element

• Assume $A[1, \ldots i + 1]$ is a heap and $A[i + 2], \ldots, A[n]$ have correct elements.
 – $A[i + 1]$ has now correct element
 – time: $\sum_{i=1}^{n} \log(i) = O(n \log n)$
 (time for transforming a heap to a sorted sequence.)
Time complexity for heap sort

• Heap building
 – $2n$ comparisons
 – n data movements

• Heap sort
 – $2 \sum_{i=2}^{n} \log i$ comparisons
 – $\sum_{i=2}^{n} \log i$ data movements

• $\sum_{i=2}^{n} \log i \leq n \log n - n$
 – $2n + 2 \sum_{i=2}^{n} \log i \leq 2n \log n$ comparisons.
 – $n + \sum_{i=2}^{n} \log i \leq n \log n$ data movements.
Lower Bounds for Sorting Problem

• Insertion sort, Selection sort: $O(n^2)$.
 Mergesort, heapsort, (quicksort): $O(n \log n)$.
 Is it possible to improve it even further?

• Lower bound for a Problem:
 A proof that NO Algorithm can solve the problem better.

† Much harder to prove a lower bound for a problem since we have to consider ALL possible algorithms, not just one particular approach.

† We need a model corresponding to an arbitrary (unspecified) algorithm
 And a proof that ANY algorithm that fits the model will has a running time higher than the lower bound.

 – Example:
 We cannot say we will use a special data structure for this problem. Because there may be an algorithm that do not use this data structure and runs faster.
• Decision tree model

† decision trees model computations that consists of comparisons.
† Many known lower bound proofs use decision tree model.
† As a computation model, decision tree model is weaker than Turing Machine or RAM model.
Decision tree model

- Binary trees with two types of nodes:
 - **Internal nodes**: two children, **leaves**: no child.
 (Also called two-trees or 2-trees)
- Internal node: associated with a query, the outcome is one of two possibilities. Each one is associated to one of the branches.
- Leaf: associated with a possible output
- Input is a sequence of numbers: x_1, x_2, \ldots, x_n
 Computation starts at the root of the tree.
 In each internal node, the query is applied.
 Either go left or go right depending on the result of the query.
- When reaching a leaf, the output associated with the leaf is the output of the computation.
- The worst-case running time of a tree T is the height of T. That is the maximum number of queries required by an input.
The Decision tree for insertion sort with \(n = 3 \)

Input: \(a, b, c \). In array, \(A[1, \ldots, 3] \)
Lower bound for worst case

We want to find the lower bound of the height of a binary tree in terms of number of leaves.

- **Lemma:** Let l be the number of leaves in a binary tree and let h be its height. Then $l \leq 2^h$.

 Proof: Induction on h \(\Box \).

- Let l and h be as in the Lemma. Then $h \geq \lceil \log l \rceil$. From the Lemma, $l \leq 2^h \implies \log l \leq h \implies h \geq \lceil \log l \rceil$ (since h is an integer).

- A binary tree with $n!$ leaves has a height greater than $n \log n - 1.5n$

\[
\begin{align*}
h \geq \log(n!) & \geq \log(n(n-1)(n-2)\ldots([n/2])) \\
& \geq \log([n/2]^{n/2}) \geq n/2 \log(n/2).
\end{align*}
\]

A closer lower bound is

\[
h \geq \log(n!) \geq n \log n - 1.5n.
\]
Theorem. Every decision tree algorithm for sorting has height $\Omega(n \log n)$.

Proof:

- input for sorting is x_1, x_2, \ldots, x_n
- output is a sorted sequence, or is a permutation of input!
 (tell us how to rearrange input such that they become sorted.)
- every permutation is a possible output (input can be in any order)
- every permutation of $(1, 2, \ldots, n)$ must be represented as an output in the decision tree for sorting.
 (Otherwise sorting algorithm is not correct!)
- two different permutations represent two different outputs. They must be associated with different leaves.
- total number of permutations is $n!$
- height of the tree is at least $\log(n!) \geq cn \log n$
- height is $\Omega(n \log n)$. □
Information-theoretic lower bound

• The lower bound depends only on the amount of information contained in the output.
• It needs to distinguish between $n!$ different outputs; it can only distinguish two possibilities at a time
• Encoding $n!$ possibilities needs $\log(n!)$ bits
• We have not even defined the kind of query we allow
• This lower bound only implies:

\[
\text{NO-COMPARISON-BASED sorting algorithms can be faster than } \Omega(n \log n)
\]
Is it possible to find a comparison algorithm for sorting which has an average behavior better than $n \log n$?

Answer: **NO.**

- **epl** (external path length) = sum of the length of all paths from the root to a leaf.
- **apl** (average path length) = epl/ (number of leaves)

Example:

epl = 2 + 2 + 1 = 5 while apl = 5/3 ≈ 1.67
Lemma. Among 2-trees with \(l \) leaves, the epl is minimal only if all the leaves are on at most two adjacent levels.

Proof. Suppose we have a 2-tree of height \(h \) that has a leaf \(x \) at level \(k \leq h - 2 \).

- choose a node \(y \) in level \(h - 1 \) that is not a leaf
- remove children of \(y \), attach them to \(x \)
- the total number of leaves is the same
- net decrease of epl is

\[
2h + k - (h - 1 + 2(k + 1)) = h - 1 - k > 0 \quad (\text{since } k \leq h - 2)
\]
Lemma. The minimum epl for 2-tree with l leaves is

$$l \lfloor \log l \rfloor + 2(l - 2^{\lfloor \log l \rfloor})$$

Proof.

- From previous Lemma, we can consider only 2-trees of height h and leaves in levels $h - 1$ and h.
- We can transform such a tree into a complete binary tree with possibly some of the right-most leaves removed WITHOUT changing the number of leaves and epl.
• If l is power of two, all leaves are at level $\log l$. $\text{epl} = l \log l$

• If l is not a power of 2, the number leaves at level h is $2(l - 2^{h-1})$

 (each node in level $h - 1$ that is not a leaf has two children)

• $\text{epl} = l(h - 1) + 2(l - 2^{h-1}) = l\lfloor \log l \rfloor + 2(l - 2^{\lfloor \log l \rfloor})$

□
Lemma. The average path length in a 2-tree with \(l \) leaves is at least \(\lfloor \log l \rfloor \).

Proof. The minimum average path length is:

\[
\frac{l \lfloor \log l \rfloor + 2(l - 2\lfloor \log l \rfloor)}{l} = \\
= \lfloor \log l \rfloor + 2 \frac{l - 2\lfloor \log l \rfloor}{l} = \\
= \lfloor \log l \rfloor + \epsilon, \quad 0 \leq \epsilon < 1. \quad \square
\]
\[\frac{l}{2} < 2^{\lfloor \log l \rfloor} \leq l \]

\[\implies -l/2 > -2^{\lfloor \log l \rfloor} \geq -l \]

\[\implies l - l/2 > l - 2^{\lfloor \log l \rfloor} \geq l - l \]

\[\implies l/2 > l - 2^{\lfloor \log l \rfloor} \geq 0 \]

\[\implies 1/2 > [l - 2^{\lfloor \log l \rfloor}] / l \geq 0 \]

\[\implies 1 > 2[l - 2^{\lfloor \log l \rfloor}] / l \geq 0 \]
Theorem. The average number of comparisons done by an algorithm to sort n numbers by comparison is at least $\lfloor \log n! \rfloor \approx [n \log n - 1.5n]$. □