1. First 18 examples (training data) in contact_lenses:
 young, myope, no, reduced, none
 young, myope, no, normal, soft
 young, myope, yes, reduced, none
 young, myope, yes, normal, hard
 young, hypermetrope, no, reduced, none
 young, hypermetrope, no, normal, soft
 young, hypermetrope, yes, reduced, none
 young, hypermetrope, yes, normal, hard
 pre-presbyopic, myope, no, reduced, none
 pre-presbyopic, myope, no, normal, soft
 pre-presbyopic, myope, yes, reduced, none
 pre-presbyopic, myope, yes, normal, hard
 pre-presbyopic, hypermetrope, no, reduced, none
 pre-presbyopic, hypermetrope, no, normal, soft
 pre-presbyopic, hypermetrope, yes, reduced, none
 pre-presbyopic, hypermetrope, yes, normal, none
 presbyopic, myope, no, reduced, none
 presbyopic, myope, no, normal, none

The 19th example (test data) in contact_lenses:
 presbyopic, myope, yes, reduced, none

\[
p(\text{none} | \text{presbyopic, myope, yes, reduced}) \\
= p(\text{presbyopic, myope, yes, reduced} | \text{none})p(\text{none})/p(\text{presbyopic, myope, yes, reduced})
\]
\[
\propto p(\text{presbyopic, myope, yes, reduced} | \text{none})p(\text{none})
\]
\[
= p(\text{presbyopic} | \text{none})p(\text{myope} | \text{none})p(\text{yes} | \text{none})p(\text{reduced} | \text{none})p(\text{none})
\]
\[
= (2/11)*(6/11)*(5/11)*(9/11)*(11/18)
\]
\[
= 0.0225
\]

Note: \(A \propto B\) means \(A\) is proportional to \(B\).

Given \(p(\text{presbyopic, myope, yes, reduced})\) being a constant, we can therefore have
\[
p(\text{presbyopic, myope, yes, reduced} | \text{none})p(\text{none})/p(\text{presbyopic, myope, yes, reduced})
\]
\[
\propto p(\text{presbyopic, myope, yes, reduced} | \text{none})p(\text{none})
\]

Similarly,
\[
p(\text{soft} | \text{presbyopic, myope, yes, reduced}) = 0
\]
\[
p(\text{hard} | \text{presbyopic, myope, yes, reduced}) = 0
\]

The 19th example will be labelled as “none” by naïve Bayes.