Data Mining in CRM & Direct Marketing

Jun Du
The University of Western Ontario
jdu43@uwo.ca
Outline

• Why CRM & Marketing
• Goals in CRM & Marketing
• Models and Methodologies
• Case Study: Response Model
• Case Study: Attrition Model
• Case Study: Solicitation Channel Model
Why CRM & Marketing

• KDnuggets polls: Industries/Fields for Analytics/Data Mining
 – CRM has been the #1 industry/field in each of the past 6 years
 – Direct Marketing/Fundraising has been one of the top 10 industries/fields in each of the past 6 years.

• Rexer Analytics surveys: In what fields do you typically apply data mining?
 – CRM/Marketing has been the #1 field in each of the past 5 years.

• News
 – Feb, 2012: How Companies Learn Your Secrets
 – Aug, 2012: Romney Uses Secretive Data-Mining
Outline

• Why CRM & Marketing
• Goals in CRM & Marketing
• Models and Methodologies
• Case Study: Response Model
• Case Study: Attrition Model
• Case Study: Solicitation Channel Model
Goals

• What goal(s) do you expect to achieve by applying data mining to CRM/Marketing?
 – Do you want to attract new customers?
 – Do you want those new customers to be profitable?
 – Do you want to understand the characteristics of your current customers?
 – Do you want to make your unprofitable customers more profitable?
 – Do you want to retain your profitable customers?
 – Do you want to win back your lost customers?
 – Do you want to improve customer satisfaction?
 – Do you want to increase sales?
 – Do you want to reduce expenses?
 – …..
Outline

• Why CRM & Marketing
• Goals in CRM & Marketing
• Models and Methodologies
• Case Study: Response Model
• Case Study: Attrition Model
• Case Study: Solicitation Channel Model
Models and Methodologies

• Response Model
 – Improving response rate of market campaign (attracting new customers)
 – E.g., sending camera advertisement to people who plan to buy it
 – DM technique: classification

• Attrition Model
 – Preventing customer churn (keeping existing customers)
 – E.g., identifying customers who plan to switch cellphone plan to other companies
 – DM technique: classification
Models and Methodologies

• Response Value Model
 – Improving total profit of market campaign (attracting most profitable customers)
 – E.g., sending camera advertisement to people who plan to spend much money on it
 – DM technique: Regression, Ranking

• Solicitation Channel Model
 – Identify the best channel to reach customers
 – E.g., direct mail is the best way to send promotions to some customers
 – DM techniques: Classification
Models and Methodologies

- Segmentation Analysis
 - Segmenting customers by market potential (based on buying behaviour, etc.)
 - E.g., identifying a group of people who might be interested in buying dog food
 - DM technique: Clustering

- Cross-Sell & Up-Sell Model
 - Predicting that customers would buy other (or more) products
 - E.g., predicting people who buy gas lawn mower might also buy gas can
 - DM technique: Association Rules, Classification

-
Outline

• Why CRM & Marketing
• Goals in CRM & Marketing
• Models and Methodologies
 • Case Study: Response Model
 • Case Study: Attrition Model
 • Case Study: Solicitation Channel Model
Case Study: Response Model

• Suppose we have an alumni campaign coming in January, 2013.

• We have about 200,000 alumni as candidates, but can solicit only 20,000 of them given the budget.

• How can we apply data mining to achieve the best performance in the campaign?
 – How exactly can we select 20,000 out of 200,000 (i.e., 10%)?
 – What task is it? Classification? Regression? Clustering? ...
 – What learning algorithm should we apply?
 – What is the training / test data?
 – How to evaluate the model?
 – ……
Selecting 10%

• Basic idea: rank all the candidates, and select the top 10%.

• Problems:
 – Rank all the candidates, according to ???
 – How can we do ranking? We have never learnt it.

• Solution:
 – We can achieve ranking by doing classification or regression (i.e., use the classification / regression results as the metrics to rank all the candidates)
 – But, how?
Task (1)

• What task is it?
 – Supervised learning: Classification? Regression?

• What is your answer? And why?
Task (2)

• It depends on the campaign goal!

• Different campaign goals:
 – To achieve as high participation rate as possible
 (Participation rate = # donors / # solicited-prospects)
 • From DM perspective, to predict giving likelihood
 – To raise as much money as possible
 • From DM perspective, to predict giving potential

• Can we achieve these two goals simultaneously?
 – E.g., two alumni, who should we solicit
 • A: 90% chance to give; give $100 if so
 • B: 10% chance to give; give $100,000 if so
Task (3)

- To achieve high participation rate --- Classification
 - Label: Donor vs. Non-donor (nominal)
 - Giving amount is not considered
 - DM model is expected to produce the probability (likelihood) of being donor for each candidate
 - Candidates with highest probabilities are chosen

- To achieve high raised money --- Regression
 - Label: Giving amount (numeric)
 - Giving amount being 0 for non-donors
 - DM model is expected to estimate the giving amount for each candidate
 - Candidates with highest estimated giving amount are chosen
A More Complex Model

• Recall an example: two alumni, whom should we solicit
 – A: 90% chance to give; give $100 if so
 – B: 10% chance to give; give $100,000 if so
 • Giving likelihood (90% for A, 10% for B) produced by classification; giving potential ($100 for A, $100,000 for B) produced by regression

 – What is the expected giving amount for A, B?
 • A: 100 * 90% = 90
 • B: 100,000 * 10% = 10,000

• Combining classification and regression
 – Produce expected giving amount for each candidate:
 • Expected giving amount = giving potential * giving likelihood
 – Candidates with highest expected giving amounts are chosen
Learning Algorithms

• For regression model, any regression learning algorithm can be applied:
 – Linear regression, KNN, ...
 – Ensemble models usually work better

• For classification model, the model is expected to produce good probability estimation.
 – Can decision tree, KNN, naive Bayes produce good probability estimation?
 – Logistic regression, random forest (and other ensemble approaches) are usually preferred.
Training / Test Data

• Ideally, both training and test data should be i.i.d. (independently drawn from identical distribution)

In our case,

• Test set is the 200,000 candidate alum in a 2013 campaign

• Preferred training data: all solicited prospects in the same (similar) campaign in 2012 (or 2011).
 – Why 2012 (or 2011)?
 • For each of these prospects, we know whether he/she has given and how much he/she has given.
 – Why same (similar) campaign?
 • Training and test data approximately satisfy the “identical distribution” assumption. (Can you explain?)
Evaluation

• Evaluate the model after it has been built
 – Traditional way: 10-fold cross-validation on training data
 – Another way (if sufficient historical data is available):
 • Build model on data from year 2009, and evaluate it on 2010 data;
 • Build model on data from year 2010, and evaluate it on 2011 data;
 • More consistent with how we apply the model in the future

• Evaluate the model after it has been applied
 – After the campaign is over, evaluate the model by using the true results (v.s. the predicted results)
 – This is the actual evaluation
Other Things We Can Do

• Apply ranking techniques to choose candidates
 – Recall: the goal is to select 20,000 prospects with the highest giving potential from total 200,000.
 – Do we really need estimate the specific giving potential for them?
 – Or do we just need rank them according to the giving potential?
 – Ranking techniques can be applied, and might further improve it.

• Instead of using the fixed “20,000”, can we determine the optimal # of alum to be solicited (given the cost of solicitation)?
 – If more alum (in addition to the 20,000) have higher expect giving amount (than solicitation cost), should we solicit them as well?
 – If some alum (within the 20,000) have even lower expected giving amount (than solicitation cost), should we still solicit them?
Demonstration

• Real world data / applications
Outline

• Why CRM & Marketing
• Goals in CRM & Marketing
• Models and Methodologies
• Case Study: Response Model
 • Case Study: Attrition Model
• Case Study: Solicitation Channel Model
Case Study: Attrition Model

• Suppose we have 5,000 donors in 2012, how many of them will keep giving in 2013, and how many of them will leave?
• How can we apply data mining to predict whether they will keep giving or leave in 2013?
 – What learning algorithm we should apply?
 – What is the training / test data?
 – How to evaluate the model?
 –
Task

• **A classification problem:**

 – For each donor in 2012, model needs to make a prediction of whether he/she will stay or leave in 2013.

 – Label: stay as a donor in 2013 vs. leave in 2013

• **In addition to the class label, it is preferred for the model to output the probability (likelihood) of leaving (or stay):**

 – Priority can be given to the donors who are most likely to leave

 – Classification with probability estimation
Learning Algorithms & Evaluation

• Learning algorithms:
 – Classification algorithms with good probability estimation are preferred
 – Logistic regression, random forest (see previous slides)

• Evaluation:
 – Evaluation after model has been built
 – Evaluation after model has been applied (real evaluation)
 – Same principles as in “Response Model” part
Training / Test Data

• Test set is the 5,000 donors in 2012
 – Snapshot of database in the end of 2012 for these 5,000 donors

• Preferred training data: all donors in 2011 (and whether they made donations in 2012)
 – Snapshot of database in the end of 2011 for all donors in 2011
 – Labels being whether they made donations in 2012

• Question: if one alum made donations in both 2011 and 2012, will we have two identical examples in training and test sets?
Demonstration

• Real world data / applications
Outline

• Why CRM & Marketing
• Goals in CRM & Marketing
• Models and Methodologies
• Case Study: Response Model
• Case Study: Attrition Model
• Case Study: Solicitation Channel Model
Case Study: Solicitation Channel Model

• See demonstration for real-world application