1. Consider a directed graph $G = (V, E)$ representing a communication network where each node represents either a client computer, a server, or a packet switch, and each edge represents a communication link. Packet switches just re-route the information that they receive so clients and servers can communicate. Let C be the set of clients and S be the set of servers, where $C \cap S = \emptyset$. We wish to find a set P of paths in G that allow each client to connect to a server. Paths in P must be edge disjoint to avoid interference. Furthermore, P must connect a server to at most one client and each client must be connected to exactly one server. Paths in P might go through nodes that represent clients or servers. For example, in the following graph the clients are light shaded and the servers are black. A solution P for this instance of the problem consists of the paths drawn in bold.

- (10 marks) Design a polynomial time algorithm for solving the problem.
- (15 marks) Prove that your algorithm is correct.
- (5 marks) Compute the time complexity of the algorithm.
- (5 marks) Modify the above algorithm so that if p is a path in P from client c_i to server s_j then all intermediate nodes in p represent packet switches.

2. A group of k workers in a factory needs to perform a set $T = \{T_1, T_2, \ldots, T_n\}$ of tasks. Task T_i has to be performed by one worker, it must be started at time s_i and it requires time p_i to be completed (so the task must be finished at time $s_i + p_i$). A worker cannot work on two tasks at the same time, but when a worker finishes a task she can work on another one. The setup time needed for a worked to go from task T_i to task T_j is D_{ij}; so if a worked completes task T_i at time $s_i + p_i$ she cannot perform task T_j if $s_j < s_i + p_i + D_{ij}$. We wish to determine whether the k workers can perform all the tasks in T.

- (15 marks) Design a polynomial time algorithm for solving this problem. The algorithm must return $true$ if all the tasks can be completed by k workers, and $false$ otherwise.
- (15 marks) Prove that your algorithm is correct.
- (5 marks) Compute the time complexity of the algorithm.

3. Consider the following approximation algorithm for the bin packing problem.
Algorithm LastFit(I,S)
Input: Set I of items and set S of item sizes; item I_j ∈ I has size S_j
Output: A packing of I into unit size bins
B ← ∅
for each item I_j ∈ I do {
 if I_j fits in one of the bins of B then
 Put I_j in the last bin where it fits
 else {
 Add a new bin b to B
 Put I_j in b
 }
}
Return B

• (10 points) Compute the approximation ratio of the above algorithm. You must explain how you computed the approximation ratio.

• (20 marks) Compute the approximation ratio of the First-Fit algorithm discussed in class for the case when each item has size at most 1/3. (Hint. The approximation ratio is smaller than 2.)