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Image Processing Basics Wt

A POlnt PfOCGSSlng Extra Reading: Szeliski Sec 3.1
A gamma correction intensities, colors
A window-center correction
A histogram equalization

A Fllterlng (Iinear and noﬂinear) Extra Reading: Szeliski Sec 3.2-3.3
A mean, Gaussian, and median filters contrast edges
A imagegradients|_aplacian texture

A normalized crossorrelation (NCC)
A

A Other featu res Extra Reading: Szeliski Sec. 4.1
Harris corners, MOPS, SIFT, etc.

templates, patches
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Summary of image transformations s

A Animage processingpperation (or transformatiotypically defines a
new imageg in terms of an existing imade

Examples:
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Summary of image transformations v

A An image processingperation(or transformation) typicallgefines a
new imagey in terms of an existing imade

Examples:

I Geometric (domain)transformation:

A What kinds of operatior g(X, Y) = f (t, (X, Y),ty (X, ¥))
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Summary of image transformations ~%&»

A An image processingperation(or transformation) typicallgefines a
new imagey in terms of an existing imade

Examples:

I Geometric (domain)transformation:

A What kinds of operatior g(X, Y) = f (t, (X, Y),ty (X, ¥))

I Range transformation:
A What kinds of operatior g(X, Y) =t( f (X, y))
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Summary of image transformations s

A An image processingperation(or transformation) typicallgefines a
new imageg in terms of an existing imade

Examples:

I Geometric (domain)transformation:

A What kinds of operatior g(X, Y) = f (t, (X, y),ty(X, Y))

i R nsformation: point processing
A What kinds of operatior g(X, Y) =t( f (X, y))

— neighborhood
i Filt ates new images from processing

g(xy)= fhuv)a(x-u,y- v) @udv
I more on filteringater lul<e
lvi<e
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Point Processing Western

g(x,y) =t(1(x,y))

for each original image intensity valde function t(:)

returnsa transformed intensityalue t(1).

NOTE: we will often use
| i = t(l ) notation |, Instead off(x,y) to
I denote intensity at pixg=(x,y)

Almportant: every pixel is for itself
- spatial information is ignored!

AWhat can point processing do?

(we will focus on grey scale images, S=eliski3.1 for examples of point processing for color images)
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Point Processing:

Examples of graygcale transformg ¥t
li=t(l)

FIGURE 3.3 Some L—-1
basic gray-level
transformation

functions used for Negative
image
enhancement. wth roon
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Input gray level. r
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Point Processing:

Negative

ab

FIGURE 3.4

(a) Original
digital
Mmammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

||i> or g(x,y)

t(l) = 255- |

g(xy) =t(f(x,y)) =255- 1(x,y)
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Point Processing:

Powetklaw transformationd

The University of

Western

Ontario
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Input gray level. r

y =25
- y =30 .
y = 10.0
/ = 25.0
| | | _/
L)2 3L/4 L—1

FIGURE 3.6 Plots
of the equation

5 = cr’ for
various values of
y(c = 11inall
cases).
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Point Processing:

Gamma Correction Wester

Image as viewed on monitor

ab
cd

FIGURE 3.7

(a) Linear-wedge
grav-scale image.,
{b) Response of
monitor to linear
wedge.

(¢) Gamma-
corrected wedge.
{(d) Output of
monitor.

Gamma
correction

L

Image as viewed on monitor

Gamma Measuring Applet:

http://www.cs.berkeley.edu/~efros/java/gamma/gamma.html
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Point Processing:

Enhancing Image via Gamma Correc

ab
cd

FIGURE 3.9

(a) Aerial image.
{(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0.4.0,and
5.0, respectively.
{Original image
for this example
courtesy of
NASA.)
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Point Processing:

Understanding Image Histograms

Diark image Lonw-contrast image

Bright image

Image Brightness Image Contrast

- : L : N ---number of pixels with intensity
probability of intensityi : ~ P(1) = —

N ---total number of pixels in the image
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Point Processing:

Contrast Stretching

Ouput gray level. s

3L/4

L2

L/4

(rz2.52)

T(r)

(ry.s)

L4 L2 L4 L
Input gray level.r

The University of

Ontario

ab
cd

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. {c) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)
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Point Processing:

Contrast Stretching

Original images Histogram corrected images

1)

2)



http://www.uwo.ca/

The University of

Point Processing:

Contrast Stretching Wede

Original images Histogram corrected images

3)
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One way to automatically select transformation t
Histogram Equalization o

FIGURE 3.18 1.00
Transformation

functions (1)

through (4) were

obtained from the

histograms of the 075
images in

Fig.3.17(a). using

Eq. (3.3-8).

0.50 -

025 -

0
255

t(i) = aI p(j) = aI_ " = cumulativedistribution
j=0

Ny
n . . -
i=0 of Image intensities

eésee Gonzalez and Woods, Sec3. 3.
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Point processing

Histogram Equalization Weckn

t(i) = aI p(j) = aI - = cumulativedistribution
j=0 j=0 of image intensities

Why does that work?

Answer in probability theory:
/7 random variable with probability distribution p(7) over / in [0,1]
If #(/) is a cumulative distribution of / then

/ 0 = £ (s/ayandom variable with wuniform distribution over its range [0,1]

That is, transform image / &ill have a uniformly-spread histogram (good contrast)
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Output gray level

(monitords

The University of

Point Processing:

Window-Center adjustment Wt

range)

dynami c

256

o

: 60000
input gray level

(high dynamic range image)
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Output gray level

( monitor 6s

The University of

Point Processing:

Window-Center adjustment Welen

range)

dynami c

256

60000

@)

input gray level
(high dynamic range image)
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Point Processing:

Window-Center adjustment Western

Ontario

256

window

output gray level

A

center

y

60000

input gray level
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Point Processing:

Window-Center adjustment

Window = 4000
Center = 500
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Point Processing:

Window-Center adjustment Wl

Window = 2000
Center = 500
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Point Processing:

Window-Center adjustment

Window = 800
Center = 500
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Point Processing:

Window-Center adjustment Wedrn

Window =0
Center = 500

If window=0 then we get
binary imagehresholding
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Point Processing:
Window-Center adjustment Western

Window = 800
Center = 500

Window = 800
Center = 1160
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A A | t0s hi stogram wonot
No point processing wil

Al mages contain a | ot of

Readings: Szelisk| Sec 3.2-3.3
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Neighborhood Processing (filtering)
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Linear image transforms Wl
Let 6s start with 1D image (a signal): flio]
E flil =

fle]

A very general and useful class of transforms are
the linear transforms  of f, defined by a matrix M

E

un

&

*=

glil = > MIi,jlf[i]

=1

M. 7]

4

*

&

=

e

£l

&

=

*

};[,-]_
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Neighborhood Processing (filtering)
Linear image transforms

The University of

A5
Wester

Ontario

Let 60s

Ile]

start

wi t h

flil =

1D

I mage

e T o e e e e e

T 1
[ R T T R T

e T o I e o e e

e T e Y e e [ e e [
o [ e Y o [ e e e [
o [ e Y o [ v e e [
o [ e Y o o v e e [
o [ e Y o v e e [
oo QQO o Qo
CoOoQQoQQ

(a

matrix M

o [ v o o e Y e [
o [ v e o O e e [
o v e v Y e e [
o= QoOoQo
oy = o e e [ e
=0 000000

signal):

flil —

fli] =

Fli]
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Neighborhood Processing (filtering)
Linear image transforms

The University of

A5
Wester

Ontario

Let 60s

Ile]

start

wi t h

flil =

1D

I mage
0 0
1 0
01
00
0 0
00
0 0
0 0
2 0
11
01

lﬂﬂ
2lo o
00
00
0 0

(a

matrix M

o T o o o Y e o
(o I e v Y e o [ o
CoO=QoOoQo
[ O e (e e o [
=QoQQoQ0
CooQQoQQ

o e e e Y e [
o e e Y e e [
o T o Y I e Y e o [
Lo B O = e B e e ]
HEOQOQQODao
HFooQooQo

signal):

fli] —

fli] =

Fli]
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Neighborhood Processing (filtering)
Linear shiftinvariant filters o

matrix M
+ + 000000 It is known as dinear shift-invariant filter and is
a b ¢ 00000 represented by kernel (or mask) h:
O a b ¢ 0 0 0 O
O 0 a b ¢ 000 ]
D0 00abecOO hli] =[a b ]
0 0 O 0 a b ¢ 0Q
O 0 000 a b ¢ . . .
000000 % « and can be written (for kernel of si2k+1) as:

- -

Kk
This pattern is very common g [|] — a h[U] d [| + U]

- same entries in each row
k

- all non-zero entries near the diagonal
N The above allows negative filter indices. When
g — M G you implement need to uséfu+k] instead ofh[u]
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Neighborhood Processing (filtering)
2D linear transforms

We can do the same thing for 2D images by

The University of

Ontario

concatenating all of the rows into one long vector

R

k

*

*

M. 7]

#

*

b

b

7l

" h mraster-rd ~ arder):
£[i] = f[&/mg i%m]

=

=

gli]
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Neighborhood Processing (filtering)

2D filtering

A 2D image f[i,j]] can be filtered by a 2D kerndl[u,v] to
produce an output imagagi,j] :

k ok
gli,jl=a a hluvali+u,j+v]
u=-k v=-k
This is called a&rosscorrelation operation and written:

g = hAf

hi s ¢ a lfiltee,dketribl,e0 imtask G
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Neighborhood Processing (filtering)

2D filtering Weslern

Ontario

A convolution operation is a crossorrelation where the filter is
flipped both horizontally and verticallyefore being applied to

the image:
k
ali, ] = a h[uVvIOi-u, j- V]
=-k v=-k
Itis written: g =h* f :é éki - u,- V] CE[i +u, j +V]

u=-k v=-k

How does convolution differ from crossrrelation?
It hu,v] =h-u,-V] then there is no difference between convolution artbecrelsgion

convolution has addi tammutaidityagsocatovity n iAdna lacge o r povidequeer iarellysiss
(seeSzeliskiSec 3.2, Gonzalez and Woods Sec. 4.6.4)
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2D filtering
Noise

Filtering Is useful for
noise reduction...

"

= .ﬂ..:ﬂ'__ “: g

(side effectsblurring ) alt and pepper noise

Common types of noise:

A Salt and pepper noise
random occurrences of
black and white pixels

A Impulse noise:random
occurrences of white pixels

A Gaussian noisevariations in
intensity drawn from a
Gaussian normal distribution

Impulse noise Gaussian noise
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Practical noise reduction Wl

How can we nNnsmootho aw

o, 0] 0] 0O
o, 0] 0] 0O
100| 130| 110 120| 110
110 90 | 100| 90 | 100
130| 100| 90 | 130|110
120|100| 130| 110| 120
90 | 110| 80 | 120| 100

OO 0O|0O|0O|O0O|O|O|O|O
OO0 0O|l0O|O|lO|O|O|O
OO0 0O|0O|O|lO|O|O|O
OO 0O|0O|O0O|O|O|O|O|O
OO0 0O|O0O|O|O|O|O|O
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Neighborhood Processing (filtering) _,
West

Mean filtering

Glz, y]
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Neighborhood Processing (filtering)
Mean filtering

The University of

Weste

Ontario
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Gaussian Salt and pepper

Effect of o oo
mean filters

Ax5

TxT
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Neighborhood Processing (filtering)
Mean kernel W

AWhat os t he kernel f or

H[u,V]
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Neighborhood Processing (filtering)

S
J
Weste

Gaussian Filtering

A A Gaussian kernel gives less weight to pixels
further from the center

of the window

11211
ic' 2142
16 11211
H[u,V]

1 _u2_+2£

h(u,'v)=27m26 o

This kernel is an approximation
of a Gaussian function:
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Neighborhood Processing (filtering)
Mean vs. Gaussian filtering
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Neighborhood Processing (filtering)
Median filters

A A Median Filter operates over a window by
selecting the median intensity in the window.

A What advantage does a median filter have ove
a mean filter?

A Is a median filter a kind of convolution?

- No, median filter is an example of ndimear filtering
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COmpariSOn: Gaussian Median
salt and peppe 5 : |
noise

Ax3
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Comparlson : The University of
Gaussian
noise Western
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