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CS 4487/9587  

Algorithms for Image Analysis 

2D Segmentation (part II) 
 

Deformable Models 
 

Acknowledgements: many slides from the University of Manchester, 
demos from Visual Dynamics Group (University of Oxford),  
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CS 4487/9587  Algorithms for Image Analysis  

Deformable Models in 2D 

 Active Contours or “snakes”   

• “snakes” vs. “livewire” 

• (discrete) energy formulations for snakes 

• relation to Hidden Markov Models (HMM) 

 Optimization (discrete case) 

• Gradient Descent 

• Dynamic Programming (DP), Viterbi algorithm 

• DP versus Dijkstra 

Extra Reading: Sonka et.al 5.2.5 and 8.2 
        Active Contours by Blake and Isard 

http://www.uwo.ca/
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“Live-wire” vs. “Snakes” 

• intelligent scissors         [Mortensen, Barrett 1995] 

• live-wire      [Falcao, Udupa, Samarasekera, Sharma 1998] 

1 

2 
3 

4 

Shortest paths on image-based graph connect 
seeds placed on object boundary 

http://www.uwo.ca/
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“Live-wire” vs. “Snakes” 

Given: initial contour (model) near desirable object  

•Snakes, active contours   [Kass, Witkin, Terzopoulos 1987] 

•In general, deformable models are widely used  

http://www.uwo.ca/
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“Live-wire” vs. “Snakes” 

•Snakes, active contours   [Kass, Witkin, Terzopoulos 1987] 

•In general, deformable models are widely used  

Given: initial contour (model) near desirable object  

Goal: evolve the contour to fit exact object boundary    

http://www.uwo.ca/
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Tracking via deformable models  

1. Use final contour/model extracted at frame  
t   as an initial solution for frame  t+1 

2. Evolve initial contour to fit exact object 
boundary at frame   t+1 

3. Repeat steps 1 and 2 for  t ‘= t+1  

http://www.uwo.ca/
http://www.uwo.ca/
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Tracking via deformable models 

Acknowledgements: Visual Dynamics Group, Dept. Engineering Science, University of Oxford. 

Traffic monitoring 
Human-computer interaction 
Animation 
Surveillance 
Computer Assisted Diagnosis in medical imaging  

Applications: 

http://www.uwo.ca/
http://www.uwo.ca/
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Tracking via deformable models 

Tracking Heart Ventricles 

http://www.uwo.ca/
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“Snakes” 

 A smooth 2D curve which matches to image data 

 Initialized near target, iteratively refined 

 Can restore missing data 

 

initial intermediate final 

Q: How does that work? …. 

gradient descent w.r.t. some 
function describing snake’s quality 

http://www.uwo.ca/
http://www.uwo.ca/


The University of 
 
 
  
 
 
 

Ontario 

The University of 
 
 
  
 
 
 

Ontario 

5-10 

Preview 

assume some energy function   f(x) 
describing snake’s “quality”  f(x) 

0x

)x('ftxx ii1i

gradient descent for 1D functions 

1x2x

local minima  

for f(x) 

x̂

1Rx

for simplicity, assume that  

"snake” is a vector (or point) in  R1  

Q: Is snake (contour) a point in some space? ... Yes 

http://www.uwo.ca/
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Parametric Curve Representation 
(continuous case) 

 A curve can be represented by 2 functions  

open curve closed curve 

1s0))s(y),s(x()s(ν

Note: in computer vision and medical imaging the term “snake” is commonly associated with  
such parametric representation of contours.   (Other representations will be discussed later!) 

Here,   contour is a point in           (space of functions)  R
]}1,0[s|)s({ νC

parameter 

http://www.uwo.ca/
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Parametric Curve Representation 
(discrete case) 

 A curve can be represented by a set of 2D points 

niyx iii 0),(ν

Here,   contour is a point in         _                   
n2R

)y,x,....,y,x,y,x()ni0|( 1n1n1100iνC

),( nn yx

parameter 

http://www.uwo.ca/
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Measuring snake’s quality:  

Energy function 

Contours can be seen as points C in               (or in        ) 

 
 

We can define some energy function   E(C)  that assigns 

some number (quality measure) to all possible snakes 

n2R R

)y,x,....,y,x,y,x(),....,,,( 1n1n11001n210 ννννC

E(C) 
RR n2

(scalars) (contours C) 

Q: Did we use any function (energy) to measure quality of segmentation results in  
                          1) image thresholding? 
                          2) region growing? 
                          3) live-wire? 

NO 

NO 

YES (will compare later) 

WHY?:  Somewhat philosophical question, but 

specifying a quality function E(C) is an objective 

way to define what “good” means for contours C. 

Moreover, one can find “the best” contour 

(segmentation) by optimizing energy E(C). 

http://www.uwo.ca/
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Energy function 

Usually, the total energy of snake is a combination of 

internal and external energies 

exin EEE

Internal energy encourages 
smoothness or any particular shape 

 
Internal energy incorporates prior 
knowledge about object boundary 

allowing to extract boundary even if 
some image data is missing 

External energy encourages curve onto 
image structures (e.g. image edges) 

http://www.uwo.ca/
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Internal Energy  
(continuous case) 

 The smoothness energy at contour point v(s) could be 

evaluated as 

Then, the interior energy (smoothness) of the whole snake                                 
        is 

Elasticity/stretching Stiffness/bending 

sd

d

ds

d
sssEin 2

2

)()())((

2
2

1

0

inin ds))s((EE

]}1,0[s|)s({ νC
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Internal Energy 
(discrete case) 

5v

4v
3v

2v

1v
6v

7v

8v

10v

9v

elastic energy 

(elasticity) 

i1iv
ds

d

bending energy 

(stiffness) 

1ii1i1iii1i2

2

2)()(
ds

d

)( iii y,xν

2n)( 1n210 ,....,,, ννννC
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Internal Energy 
(discrete case) 

Elasticity Stiffness 

i1iv
ds

d

11112

2

2)()( iiiiiii
ds

d

1

0

2

11

2

1 |2|||
n

i

iiiiiinE

)( iii y,xν

2n)( 1n210 ,....,,, ννννC
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External energy 

 The external energy describes how well the 

curve matches the image data locally 

 Numerous forms can be used, attracting the 

curve toward different image features 

http://www.uwo.ca/
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External energy 

 Suppose we have an image   I(x,y) 

 Can compute image gradient                      at any point 

 Edge strength at pixel  (x,y)  is 

 External energy of a contour point  v=(x,y)   could be 

)I,I(I yx

|)y,x(I|

22 |),(||)(|)( yxIIEex vv

1

0

)(
n

i

iexex EE discrete case  
}ni0|{ iνC

1

0

))(( dssEE exex
continuous  case  

]}1,0[s|)s({ νC

 External energy term for the whole snake is 

http://www.uwo.ca/
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Basic Elastic Snake 

 The total energy of a basic elastic snake is 

continuous case 

discrete case 

1

0

2

1

0

2 ds|))s(v(I|ds|
ds

dv
|E

1n

0i

2

i

1n

0i

2

i1i |)v(I||vv|E

elastic  smoothness term 
(interior energy) 

image data term 
(exterior energy) 

]}1,0[s|)s({ νC

}ni0|{ iνC
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Basic Elastic Snake 
(discrete case) 

This can make a curve shrink   

(to a point) 

1

0

2
n

i

iin LE

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

1n

0i

2

iiex |)y,x(I|E

2
1

0

2 |),(||),(| iiy

n

i

iix yxIyxI

)y,x,....,y,x,y,x()ni0|( 1n1n1100iνC

C 

i 
i-1 i+1 

i+2 

Li-1 Li 

Li+1 
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Basic Elastic Snake  

(discrete case) 

 The problem is to find contour                                   

     that minimizes 

 

 
 

 

 Optimization problem for function of 2n variables 

• can compute local minima via gradient descent (coming soon) 

•   potentially more robust option: dynamic programming (later) 
 

2

iiy

1n

0i

2

iix

2

i1i

1n

0i

2

i1i |)y,x(I||)y,x(I|)yy()xx()(E C

n

nn Ryyxx 2

1010 ),,,,,( C
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Basic Elastic Snake  

Synthetic example 

(1) (2) 

(3) (4) 

http://www.uwo.ca/
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Basic Elastic Snake  

Dealing with missing data 

 The smoothness constraint can deal with 

missing data: 

 

http://www.uwo.ca/
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Basic Elastic Snake  

Relative weighting 

 Notice that the strength of the internal elastic 

component can be controlled by a parameter, 

 

 

 Increasing this increases stiffness of curve 

large small medium 

1

0

2
n

i

iin LE
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Encouraging point spacing 

 To stop the curve from shrinking to a point  

 

 

 

• encourages particular point separation 

1

0

2)ˆ(
n

i

iiin LLE
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Simple shape prior 

 If object is some smooth variation on a known 
shape, use 

 

 

 
– where           give points of the basic shape 

1

0

2)ˆ(
n

i

iiinE

}ˆ{ i

)ˆ()ˆ()ˆ|(ln CNE T

in

 May use a statistical (Gaussian) shape model 

 

 
 

http://www.uwo.ca/
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Alternative External Energies 

 Directed gradient measures 

 

 

 

• Where                           is the unit normal to the 
boundary at contour point   

 

• This gives a good response when the boundary has 
the same direction as the edge, but weaker 
responses when it does not 

 

1n

0i

iyi,yixi,xex )(Iu)(IuE νν

)u,u( i,yi,xiu

i
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Additional Constraints 

• Snakes originally developed for interactive image   

segmentation 

 

• Initial snake result can be nudged where it goes wrong 

• Simply add extra external energy terms to 

 – Pull nearby points toward cursor, or 

 – Push nearby points away from cursor 

http://www.uwo.ca/
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Interactive (external) forces 

 Pull points towards cursor: 

Nearby points get 
pulled hardest 

 
Negative sign gives 
better energy for 
positions near p 

1

0
2

2

||

n

i i

pull
p

r
E
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Interactive (external) forces 

 Push points from cursor: 

Nearby points get 
pushed hardest 

 
Positive sign gives 
better energy for 

positions far from p 

1

0
2

2

||

n

i i

push
p

r
E
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Dynamic snakes 

 Adding motion parameters as variables (for 

each snake node) 

 

 Introduce energy terms for motion consistency 

 

 primarily useful for tracking (nodes represent real 

tissue elements with mass and kinematic energy) 

http://www.uwo.ca/
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Open and Closed Curves 

 When using an open curve we can impose constraints on 
the end points (e.g. end points may have fixed position)  

 

– Q: What are similarities and differences with the live-wire 
if the end points of an open snake are fixed? 

open curve 

closed curve 

n0 0

1n

1

0

2

1 )(
n

i

iiinE
2

0

2

1 )(
n

i

iiinE
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Discrete Snakes Optimization 

 At each iteration we compute a new snake position within 
proximity to the previous snake 

 New snake energy should be smaller than the previous one 

 Stop when the energy can not be decreased within local 
neighborhood of the snake (local energy minima)  

 Optimization Methods 

1. Gradient Descent 

2. Dynamic Programming 

http://www.uwo.ca/
http://www.uwo.ca/


The University of 
 
 
  
 
 
 

Ontario 

The University of 
 
 
  
 
 
 

Ontario 

5-35 

Gradient Descent 

y
E

x
E

E

negative gradient at point  (x,y)  gives direction of the 
steepest descent towards lower values of function E 

 Example: minimization of functions of 2 variables 

),( 00 yx

),( yxE

y

x

http://www.uwo.ca/
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Gradient Descent 

Etpp

 Example: minimization of functions of 2 variables 

),( yxE

y
E

x
E

t
y

x

y

x

Stop at a local minima where  0


E

y

x

),( 00 yx

update equation for a point  p=(x,y) 

http://www.uwo.ca/
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Gradient Descent 

 Example: minimization of functions of 2 variables 

High sensitivity wrt. the initialisation !! 

),( yxE

x

y
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Gradient Descent for Snakes 

simple elastic snake energy 

tE' CC

update equation for the whole snake 

t...

y

x

...

y

x

'y

'x

...

'y

'x

1n

1n

0

0

y
E

x
E

y
E

x
E

1n

1n

0

0

1n

1n

0

0

C 

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

2

iiy

1n

0i

2

iix1n01n0 |)y,x(I||)y,x(I|)y,,y,x,,x(E 

here, energy is a function of 2n variables 

C 
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Gradient Descent for Snakes 

simple elastic snake energy 

i

i

y
E

x
E

iF


iF
 tF' iii


νν

update equation for each node 

C 
t...

y

x

...

y

x

'y

'x

...

'y

'x

1n

1n

0

0

y
E

x
E

y
E

x
E

1n

1n

0

0

1n

1n

0

0

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

2

iiy

1n

0i

2

iix1n01n0 |)y,x(I||)y,x(I|)y,,y,x,,x(E 

here, energy is a function of 2n variables 

C 
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Gradient Descent for Snakes 

simple elastic snake energy 

i

i

y
E

x
E

iF


iF


Q: Do points move independently? 

)xx(2)xx(2II2II2 1iii1iyxyxxxx
E

i

)yy(2)yy(2II2II2 1iii1iyyyxyxy
E

i

=  ? tF' iii


νν

update equation for each node 

C 

NO, motion of point  i  depends on positions of neighboring points 

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

2

iiy

1n

0i

2

iix1n01n0 |)y,x(I||)y,x(I|)y,,y,x,,x(E 

here, energy is a function of 2n variables 

C 
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Gradient Descent for Snakes 

simple elastic snake energy 

i

i

y
E

x
E

iF


iF


)yy(2)yy(2II2II2 1iii1iyyyxyxy
E

i

=  ? tF' iii


νν

update equation for each node 

C 

from exterior  

(image) energy 

from interior  

(smoothness) energy 

)xx(2)xx(2II2II2 1iii1iyxyxxxx
E

i

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

2

iiy

1n

0i

2

iix1n01n0 |)y,x(I||)y,x(I|)y,,y,x,,x(E 

here, energy is a function of 2n variables 

C 
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Gradient Descent for Snakes 

simple elastic snake energy 

i

i

y
E

x
E

iF


iF
 =  ? tF' iii


νν

update equation for each node 

C 

motion of vi towards higher  

magnitude of image gradients 

motion of vi reducing  

contour’s bending 

sd

d
IF

ii yx
i 2

2

),(

2 2)|(|
v This term for vi  

depends on 

neighbors  

vi-1 and vi+1 

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

2

iiy

1n

0i

2

iix1n01n0 |)y,x(I||)y,x(I|)y,,y,x,,x(E 

here, energy is a function of 2n variables 

C 
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Discrete Snakes: 

“Gradient Flow” evolution 

1n,,0i 
i

'i

EdtdC
Contour evolution via 

“Gradient flow” 

C 

C’ 

Stopping criteria: 

iallforFi 0


 local minima of energy E 

0E

tF' iii


νν

update equation for each node 
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Difficulties with Gradient Descent 

 Very difficult to obtain accurate estimates of high-order 
derivatives on images (discretization errors) 

• E.g., estimating            requires computation of second image 
derivatives   

 

 Gradient descent is not trivial even for one-dimensional 
functions. Robust numerical performance for 2n-
dimensional function could be problematic.  

• Choice of parameter         is non-trivial 

– Small        , the algorithm may be too slow 

– Large        , the algorithm may never converge 

• Even if “converged” to a good local minima, the snake is likely 
to oscillate near it   

t

exE

yyxyxx I,I,I

t
t
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Alternative solution for 2D snakes: 

Dynamic Programming 

1

0

110 ),(),,(
n

i

iiintotal EE 

 In many cases, snake energy can be written    

as a sum of pair-wise interaction potentials 

 More generally, it can be written as a sum of 
higher-order interaction potentials (e.g. triple interactions). 
 

1

0

1110 ),,(),,(
n

i

iiiintotal EE 
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Snake energy:  

pair-wise interactions  

2

iiy

1n

0i

2

iix1n01n0total |)y,x(I||)y,x(I|)y,,y,x,,x(E 

2

1

1

0

2

1 )()( ii

n

i

ii yyxx

Example: simple elastic snake energy 
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0
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2

1ii

2

i1iii ||||||)(I||),(Ewhere 

Q: give an example of snake with triple-interaction potentials? 
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DP Snakes 

  

1v

2v
3v

4v
6v

5v

control points 

Energy E  is minimized via Dynamic Programming 

[Amini, Weymouth, Jain, 1990] 

),(...),(),(),...,,( 1132221121 nnnn vvEvvEvvEvvvE
First-order interactions 
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DP Snakes 

  

1v

2v
3v

4v
6v

5v

control points 

[Amini, Weymouth, Jain, 1990] 

Iterate until optimal position for each point is the center of the box,  

i.e. the snake is optimal in the local search space constrained by boxes 

Energy E  is minimized via Dynamic Programming 

),(...),(),(),...,,( 1132221121 nnnn vvEvvEvvEvvvE
First-order interactions 
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),( 44 nvvE),( 433 vvE

)3(3E

)4(3E )4(4E

)3(4E

)2(4E

)1(4E

)4(nE

)3(nE

)2(nE

)1(nE

)2(3E

)1(3E

)4(2E

)3(2E

Dynamic Programming (DP) 

Viterbi Algorithm 

),(...),(),( 11322211 nnn vvEvvEvvE

),( 322 vvE

)1(2E

)2(2E

),( 211 vvE

)( 2nmOComplexity:              ,  Worst case = Best Case 

0)1(1E

0)2(1E

0)3(1E

0)4(1E

Here we will concentrate on first-order interactions 

states 

1 

2 

… 

m 

si
te

s 
 

1v 2v
3v 4v

nv
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Dynamic Programming and 

Hidden Markov Models (HMM) 

 DP is widely used in speech recognition 

 

 

 

 

 

 

time 

word1 word2 word3 word4 

ordered (in time) hidden variables (words) to be estimated from observed signal 

),(...),(...),( 11101 nnniii vvEvvEvvE

)}|ln{Pr(})|)(ln{Pr( 1iiii wordwordwordtsignal
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Snakes can also be seen as  

Hidden Markov Models (HMM) 

 Positions of snake nodes are hidden variables 

 Timely order is replaced with spatial order 

 Observed audible signal is replaced with image 
 

1

n

),(...),(...),( 111211 nnniii vvEvvEvvE

),(||)(|| 1iielastici EI
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Dynamic Programming   

for a closed snake? 

),(...),(),( 11322211 nnn vvEvvEvvE

Clearly, DP can be applied to optimize an open ended snake  

Can we use DP for a “looped” energy in case of a closed snake?  

1

n

),(),(...),(),( 111322211 vvEvvEvvEvvE nnnnn

1

n

2

1n

3
4
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Dynamic Programming   

for a closed snake 

),(),(...),(),( 111322211 vvEvvEvvEvvE nnnnn

1. Can use Viterbi to optimize snake 

energy in case                 is fixed. 

(in this case the energy above 

effectively has no loop)  

 

2. Use Viterbi to optimize snake for 

all possible values of  c  and 

choose the best of the obtained m 

solutions.  

c1

for exact solution 

complexity 

increases to  

O(nm3)  
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Dynamic Programming   

for a closed snake 

),(),(...),(),( 111322211 vvEvvEvvEvvE nnnnn

DP has problems with “loops” (even one loop increases complexity). 

However, some approximation tricks can be used in practice…  

1. Use DP to optimize snake energy 

with fixed          (according to a 

given initial snake position).  

 

2. Use DP to optimize snake energy 

again. This time fix position of an 

intermediate node                           

where       is an optimal position 

obtained in step 1.   

1

2/2/
ˆ

nn
ˆ

This is only an 

approximation, 

but complexity is 

good:   O(nm2)  

http://www.uwo.ca/
http://www.uwo.ca/


The University of 
 
 
  
 
 
 

Ontario 

The University of 
 
 
  
 
 
 

Ontario 

5-55 

Dynamic Programming   

for snakes with higher order interactions 

),,(...),,(),,( 12243223211 nnnn vvvEvvvEvvvE

(e.g. if bending energy is added into the “model” of the snake)  

 Viterbi algorithm can be generalized to 3-clique 

case but its complexity increases to  O(nm3).  

 

one approach: combine each pair of neighboring  

nodes into one super node. Each triple interaction  

can be represented as a pair-wise interaction  

between 2 super-nodes. Viterbi algorithm  

will need m3 operations for each super node (why?) 

1v

2v
3v

4v

5v
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DP snakes   (open case)  

Summary of Complexity 

n

i

ii vE
1

)(

energy                       type                            complexity 
                               (order of interactions) 

                        unary potentials                  O(nm) 

                                   (d=1) 
 

                       pair-wise potentials           O((n-1)m2)   

                                  (d=2)  

                    triple potentials             O((n-2)m3) 
                                                   (d=3) 
 

                     complete connectivity          O(mn)   – exhaustive search 

                                         (d=n) 

2

1

21 ),,(
n

i

iiii vvvE

1

1

1),(
n

i

iii vvE

),...,,( 21 nvvvE

 * - adding a single loop increases complexity by factor  md-1   

* 

* 
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Problems with snakes 

 Depends on number and spacing of control points 

 Snake may oversmooth the boundary 

 Not trivial to prevent curve self intersecting 

 

 

 Can not follow topological changes of objects 
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Problems with snakes 
 May be sensitive to initialization 

– may get stuck in a local energy minimum near initial contour 

 

 

 

 

 Numerical stability can be an issue for gradient descent and 
variational methods (continuous formulation) 

• E.g. requires computing second order derivatives 

 The general concept of snakes (deformable models) does 
generalize to 3D (deformable mesh), but many robust 
optimization methods suitable for 2D snakes do not apply in 3D 

• E.g.: dynamic programming only works for 2D snakes 
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Problems with snakes 

 External energy: may need to diffuse image gradients, 

otherwise the snake does not really “see” object 

boundaries in the image unless it gets very close to it. 

image gradients 
are large only directly on the boundary 

I
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Diffusing Image Gradients I

image gradients diffused via 
Gradient Vector Flow (GVF) 

 

 

 

 

 

 

 

  
  Chenyang Xu and Jerry Prince, 98  

http://iacl.ece.jhu.edu/projects/gvf/ 
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Alternative Way to  

Improve External Energy 

 Use                     instead of                            where D() is 

 

• Distance Transform  (for detected binary image features, e.g. edges) 

1n

0i

iex )(DE v
1n

0i

iex |)(I|E v

binary image features 
(edges) 

Distance Transform  ),( yxD

Distance Transform can 
be visualized as a gray-

scale image 

•  Generalized Distance Transform (directly for image gradients) 
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Distance Transform  

(see p.20-21 of the text book)  

3 
4 

2 
3 

2 
3 

5 4 4 

2 
2 
3 

1 
1 
2 

2 1 1 2 1 
1 0 0 1 2 1 

0 
0 
0 
1 

2 3 2 1 0 1 
1 0 1 2 3 3 2 

1 
0 
1 
1 
1 
0 1 

2 

1 0 1 2 3 4 3 2 
1 
0 
1 
2 
2 

Distance Transform   Image features (2D)  

Distance Transform is a function           that for each image 

pixel  p assigns a  non-negative number            corresponding to 

distance from p  to the nearest feature in the image  I          

)(D

)( pD
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Distance Transform  

can be very efficiently computed 
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Distance Transform  

can be very efficiently computed 
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Distance Transform  

can be very efficiently computed 

5-65 

• Forward-Backward pass algorithm computes 

shortest paths in O(n) on a grid graph with regular 

4-N connectivity and homogeneous edge weights 1   

 

• Alternatively, Dijkstra’s algorithm can also compute 

a distance map (trivial generalization for multiple 

sources), but it would take O(n*log(n)). 

 - Dijkstra is slower but it is a more general 

 method applicable to arbitrary weighted graphs  
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Distance Transform: 

an alternative way to think about  

 Assuming 

 

then 

is standard Distance Transform (of image features) 

 

..

0
)(

WO

featureimageisppixelif
pF

)( pF

)( pD

Locations of binary image features 

p

||||min)}(||{||min)(
0)(:

qpqFqppD
qFqq
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Distance Transform vs. 

Generalized Distance Transform 

 For general            

 

 

is called Generalized Distance Transform of 

 

)}(||||{min)( qFqppD
q

)( pF

F(p) may represent non-binary image features (e.g. image intensity gradient) 

)( pF

)( pF

)( pD
D(p)  may prefer 

“strength” of F(p) 
to proximity 

q p 
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Generalized Distance Transforms 
(see Felzenszwalb and Huttenlocher, IJCV 2005) 

 The same “Forward-Backward” algorithm can be 

applied to any initial array  

• Binary (        ) initial values are non-essential.  

 If the initial array contains values of function F(x,y) then 

the output of the “Forward-Backward” algorithm is a 

Generalized Distance Transform 

 

 “Scope of attraction” of image gradients can be extended 

via external energy                     based on a generalized 

distance transform of 

))(||||(min)( qFqppD
Iq

|)),((|),( yxIgyxF

/0

1

0

)(
n

i

iex vDE
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Metric properties of 

discrete Distance Transforms 

- 1 

1 0 

0 1 

1 - 

Forward  
mask 

Backward  
mask 

Manhattan (L1) metric  

Set of equidistant 
points 

Metric 

1.4 1 

1 0 

1.4 0 

1.4 1 

1 

1.4 

Better approximation 
of Euclidean metric  

In fact, “exact” Euclidean Distance 
transform can be computed fairly 
efficiently (in linear or near-linear time) 
without bigger masks 
1)  www.cs.cornell.edu/~dph/matchalgs/ 
2)  Fast Marching Method –Tsitsiklis, Sethian 

Euclidean (L2) metric 
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HW assignment 2 

 DP Snakes 

• Use elastic snake model                             (value of  is important  

• Compare                         vs.  

• Compare                              vs. 

• Compare                              vs.                               where D is a 

generalized distance transform of 

    such that                                                    (value of is important)  

• Use Viterbi algorithm for optimization 

• Incorporate edge alignment  

• Use 3x3 search box for each control point 

1
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n
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iext vDE
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int
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extEEE int
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