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ABSTRACT: We present local least squares and regularization
frameworks for computing 3D velocity (3D optical flow) from 3D radial

velocity measured by a Doppler radar. We demonstrate the perfor-

mance of our algorithms quantitatively on synthetic radial velocity

data and qualitatively on real radial velocity data, obtained from the
Doppler radar at Kurnell Radar station, Botany Bay, New South

Wales, Australia. Radial velocity can be used to predict the future

positions of storms in sequences of Doppler radar datasets.
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I. INTRODUCTION

We present an extension of our 2D Doppler storm tracking work

(Cheng et al., 1998; Barron et al., 1999) to 3D by using local 3D radial

velocity neighborhoods to compute local 3D velocity (local 3D optical
flow). Radial velocity (measured by the Doppler effect) is the compo-

nent of 3D velocity along the radial ray from the radar station to some

moving 3D atmospheric point. Our computation of full velocity from

atmospheric radial velocities uses a combination of a 3D local least

squares framework, much like Lucas and Kanade’s 2D least squares

computation (Lucas and Kanade, 1981) and an iterative 3D regulariza-

tion framework, much like Horn and Schunck’s 2D regularization

(Horn and Schunck, 1981). Preliminary results were initially presented

by Chen (2001, and Chen and colleagues (2001a,b). In addition to

computing 3D velocity from Doppler radial velocities, it is also possi-

ble to use densely sampled range sequences (Yamamoto et al., 1993)

to compute range flow in a similar manner. Range flow, the 3D veloc-

ity of points on a deformable surface relative to a moving range sen-

sor, can be computed in a similar manner (Spies et al., 2000a,b; Spies

et al., 2002). Note that range flow is computed with respect to moving

3D surface data rather than with respect to moving 3D volumetric data

(and is therefore not 3D optical flow) as it involves using a slightly

different constraint equation (Spies et al., 2002).

2D optical flow methods have recently been generalized into the

3D domain. Chaudhury et al. (1994) formulated a 3D optical flow

constraint, using Ix, Iy, Iz and It derivatives. Thus, they use a time-

varying volume of intensity data, from which all four derivatives

can be computed. Much of the 3D optical flow work has been used

for medical applications, for example, to compute 3D flow for CT,

MRI and PET datasets (Song and Leahy, 1991; Song et al., 1994;

Zhou et al., 1995; Klein et al., 1997; Klein and Huesman, 1997).

The well-known 2D motion constraint equation

Ixuþ Iyvþ It ¼ 0 ð1Þ
forms the basis of most 2D optical flow algorithms. Ix, Iy and It in
(1) are the x, y and t intensity derivatives while ~v ¼ ðu; vÞ is the

image velocity (or optical flow) at pixel (x, y), which is an approxi-

mation of the local image motion. (1) is one equation in two

unknowns and manifests the aperture problem. Normal velocity,

the component of image velocity normal to the local intensity struc-

ture, can be totally expressed in terms of derivative information:

~vn ¼ �ItðIx; IyÞT
kðIx; IyÞk22

; ð2Þ

while tangential velocity, ~vt, the component of image velocity

tangential to the local intensity structure, cannot, in general, be

recovered in a local aperture. Note that

~v � n̂ ¼ vn ð3Þ
is another equivalent way to write (1), where the direction of normal vel-

ocity is n̂ ¼ ðIx; IyÞ=kðIx; IyÞk2 and the magnitude of normal velocity

is vn ¼ �It=kðIx; IyÞk2 (see Barron et al., 1994 for more details).

II. 2D OPTICAL FLOW

To resolve the aperture problem and solve~v, we need to impose an

additional local constraint. An example of a local constraint is to

assume that locally all image velocities are the same. For example,
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Lucas and Kanade (1981) use a least squares computation to inte-

grate local neighbourhoods of normal image velocities into full

image velocities (here we ignore any weighting used for simplicity).

For a N ¼ n 3 n neighbourhood, they solve a N 3 2 linear system

of equations AN32~v ¼ BN31 as

~v ¼ ðATAÞ�1ATB; ð4Þ

where A has entries Ixi and Iyi in the ith row and B has entries �Iti in
the ith row. We can perform eigenvector/eigenvalue analysis on

ATA using routines in the work of Press and colleagues (1992).

Eigenvalue (k0 � k1) and corresponding eigenvector (ê0 and ê1)
decomposition of the symmetric matrix ATA yield least squares full

image velocity, if both k1 > k0 > sD1, sD1 a threshold, typically 1.0

(Barron et al., 1994) or least squares normal image velocity,

~vln ¼~v � ê1, if k1 > sD1 but k0 � sD1 (Barron et al., 1994).

An example of a global constraint is to assume the velocity

varies smoothly everywhere. For example, Horn and Schunck

(Horn and Schunck, 1981) minimizeZZ
ðrI �~vþ ItÞ2 þ k2

�
kruk22 þ krvk22

�
dx dy ð5Þ

over the entire image, where the magnitude of k (the Lagrange multi-

plier) reflects the influence of the smoothness term and rI ¼ (Ix, Iy)
is the spatial intensity gradient. Iterative equations are used to mini-

mize (2.5) and obtain image velocity at each image location:

ukþ1 ¼ �uk � IxbIx�uk þ Iy�v
k þ Itc

a2 þ I2x þ I2y
ð6Þ

vkþ1 ¼ �vk � IybIx�uk þ Iy�v
k þ Itc

a2 þ I2x þ I2y
; ð7Þ

where k denotes the iteration number, u0 and v0 denote initial veloc-
ity estimates (typically zero), and �u k and �v k denote neighbourhood

averages of uk and vk. Intensity and velocity differentiation in x, y
and t can be performed using Simoncelli matched balanced lowpass

and highpass filters (Simoncelli, 1994).

III. 3D OPTICAL FLOW

The 3D planar motion constraint equation can be derived in a fash-

ion similar to the 2D motion constraint equation:

IXU þ IYV þ IZW þ It ¼ 0; ð8Þ

where 3D velocity ~V has components U, V and W and IX, IY, IZ and
It are the X, Y, Z and t intensity derivatives. This equation describes

a plane in 3D space. It can be rewritten as

~V � n̂ ¼ Vn; ð9Þ

where~Vn ¼ Vnn̂ is a 3D plane normal velocity, n̂ is now the 3D nor-

mal direction and Vn is a 3D normal velocity magnitude.

~Vn ¼ �ðIX; IY ; IZÞIt
kðIX; IY ; IZÞk22

� ð10Þ

The aperture problem in 3D actually yields two types of normal

velocity: plane normal velocity, the velocity normal to a local

intensity planar structure, and line normal velocity, the velocity

normal to a local line intensity structure (Spies et al., 1999; Spies

et al., 2002). In this article, we are not concerned with the computa-

tion of normal velocity, rather the Doppler radar already measures a

form of normal velocity (the velocity along a radial line from the

radar to some atmospheric location) directly.

IV. DOPPLER DATA

Our 3D Doppler data consist of datasets sampled at 10-min inter-

vals. Each dataset is composed of 15 elevations of atmospheric

radar reflectivity and radial velocity data. Each elevation consists of

360 equally spaced rays of such data, and each ray consists of 600

reflectivity and radial velocity data stored as unsigned characters.

Figure 1 illustrates the 3D structure of Doppler radar datasets. We

have implemented an X windows visualization tool to allow us to

examine (and explore) the data. This program allows one not only

to view the same elevation of data over time in movie mode but to

view all the elevations at one time in movie mode. Also, all the ele-

vation data at one time can be simultaneously viewed (using Z buf-

fer hidden surface removal) and manipulated by 3D affine transfor-

mations (Chen, 2001). Our tool also performs bilinear interpolation

to allow graphically pleasing views of the data. Figure 2 shows the

raw and bilinearly interpolated reflectivity and radial velocity data

for time 200009251510 (September 25, 15:10 hrs, 2000) at eleva-

tion two produced by our visualization program. We used the same

shading (colouring) scheme as used by the Kurnell radar station to

indicate radar reflectivity and radial velocity magnitude and direc-

tion in this and all other radar images in this article.

Currently these data are stored in a 3D array that consists of the

3D Cartesian coordinates of each data point, i.e., the 3D X, Y and Z

Figure 1. The 3D structure of Doppler radar datasets. The scanning

surfaces of radar rays are 15 cones with different elevation angles.
About 360 rays are recorded on the surface of each cone; the angle

between arbitrary two adjacent rays is one degree. Each ray is div-

ided into equal parts by 600 points which contains the reflectivity and

the radial velocity of atmospheric water precipitation. The minimum
cone angle, /min, is 588, while the maximum angle, /max, is 89.58. The
height of the rays range from a minimum of 5.25 km and a maximum

of 317.4 km, and the cone radii range from a minimum radius of
508.84 km to a maximum radius of 599.97 km. Each ray point location

is described in 3D spherical polar coordinates.
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values (in kilometers) of each data point after conversion from the

spherical polar coordinate format of input data.

V. 3D VELOCITY IN A LEAST SQUARES FRAMEWORK

To compute the 3D full velocity~V ¼ ðU, V,WÞ from radial velocity
~Vr, we use the dot product of ~V and the radial direction r̂ ¼ ðrX, rY ,
rZÞ, i.e.,~V � r̂ ¼ Vr, to obtain

UrX þ VrY þWrZ ¼ Vr; ð11Þ

which is one equation in three unknowns. Essentially, this is the 3D

motion constraint equation for 3D optical flow, i.e., (9), but with

radial velocity replacing normal velocity.

To solve ~V at a point, we select a small local neighbourhood

in the vicinity of the point. Currently, we use a 7 3 7 3 7 neigh-

bourhood (determined by trial and error). Before the least squares

estimation, the data are smoothed. For each point, we calculate

the average radial velocity in its 7 3 7 3 7 neighbourhood, and

then replace the original radial velocity at that point with its average

value. Experimental results here and in a thesis (Chen, 2001)

show smoothing the data before the computation and using large-

sized neighbourhoods for least squares integration produce better

results.

Since the neighbourhood is small compared with the whole Dop-

pler dataset, we can assume that all points in the neighbourhood

move with the same full velocity ~V. Since the radial velocities ~Vr

for different points satisfy different motion constraint planes, their

intersection defines the common 3D full velocity ~V ¼ ðU, V, WÞ,
where U, V, W are three components of the velocity vector respec-

tively along X, Y, Z axes. This forms the basis of our computation.

For a N ¼ n 3 n 3 n neighbourhood, we obtain a N 3 3 linear

system of equations

rX1
rY1 rZ1

rX2
rY2 rZ2

..

. ..
. ..

.

rXN
rYN rZN

2
6664

3
7775

U
V
W

2
4

3
5 ¼

Vr1

Vr2

..

.

VrN

2
6664

3
7775; ð12Þ

which can be written as

AN33
~V331 ¼ BN31;

where A has entries rXi
, rYi

and rZi
in the ith row, B has entry Vri

in

the ith row and N is the number of locations in the neighbourhood.

Actually, in a real computation, not all the ‘‘neighbours’’ have

acceptable radial velocity values. We threshold out those less than a

minimum radial velocity value. Only in the best case does A have

the size N 3 3.

We can solve ~V in the least squares sense as

AT
33NAN33

~V331 ¼ AT
33NBN31; ð13Þ

where ATA is a 3 3 3 symmetric real matrix (all eigenvalues are

real and positive).

The system can be solved if and only if ATA can be reliably

inverted, i.e., ATA is nonsingular. The solution is

~V ¼ ATA
� ��1

ATB: ð14Þ
The eigenvalues (k0 � k1 � k2) and their corresponding eigenvec-

tors (ê0, ê1 and ê2) can be computed from the 3 3 3 symmetric least

squares integration matrix ATA. When k0, k1, k2 > s, we can reli-

ably recover a least squares 3D full velocity ~V; otherwise, we

assume there is no reliable 3D velocity there. Line normal and plane

normal velocities (Barron and Spies, 2000; Spies et al., 2000a)

could be defined and computed; however, they would seem to pro-

vide no useful purpose for 3D storm tracking.

Lastly, we note that theoretically, we could compute full 3D

velocity from neighbouring radial velocities at adjacent time inter-

vals as well as at one time as we show in this article. Problems that

arise in this case include the fact that storms are nonrigid deform-

able objects (and hence the 3D motion constraint equation does not

hold) and that the sampling rate of one Doppler dataset every

10 min leads to aliased data.

VI. LEAST SQUARES REGULARIZED FLOW FROM
RADIALVELOCITIES

To constrain our regularization to give a smooth full velocity field

close to the true full velocity, we use the computed least squares

flow as a third consistency constraint in the regularization:

R R R ð~V � r̂ � VrÞ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Motion Constraint Equation

þ

a2
�
U2

X þ U2
Y þ U2

Z þ V2
X þ V2

Y þ V2
Z þW2

X þW2
Y þW2

Z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Smoothness Constraint

�
þ

b2
�
ðU � UlsÞ2 þ ðV � VlsÞ2 þ ðW �WlsÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Least Squares Velocity Consistency Constraint

�
@X @Y @Z; ð15Þ

where ~Vls ¼ ðUls, Vls, WlsÞ is computed least squares 3D velocity.

The first two constraints enforce 3D Horn and Schunck-like con-

straints with respect to the 3D motion constraint equation and

global smoothness in the 3D velocity field. The third constraint

requires that the difference between the least squares velocities and

the regularized velocities be minimal. This ensures we obtain a

smooth flow field, rather than the radial velocity field, as the com-

puted velocity field. The idea here is to compute a smooth regular-

ized velocity compatible with the local least squares velocities. a
and b are Lagrange multipliers that specify the relative importance

of the various constraints. On the basis of trial and error, we use

a ¼ 5.0 and b ¼ 1.0 to obtain the results in this article.

Since r2U ¼ UXX þ UYY þ UZZ, r2V ¼ VXX þ VYY þ VZZ and

r2W ¼ WXX þ WYY þ WZZ, after expansion of ~V � r̂ as Ur1 þ Vr2 þ
Wr3, we can rewrite the Euler–Lagrange equations that minimize

this functional as

ðUr1 þ Vr2 þWr3Þr1 þ b2U ¼ a2r2U þ b2Uls þ Vrr1;

ðUr1 þ Vr2 þWr3Þr2 þ b2V ¼ a2r2V þ b2Vls þ Vrr2;

ðUr1 þ Vr2 þWr3Þr3 þ b2W ¼ a2r2W þ b2Wls þ Vrr3:

The approximations r2U � �U � U, r2V � �V � V and r2W �
�W �W let us rewrite the Euler-Lagrange equations in matrix form as

A

U

V

W

2
64

3
75 ¼

ða2 �U þ b2Uls þ Vrr1Þ
ða2 �V þ b2Vls þ Vrr2Þ
ða2 �W þ b2Wls þ Vrr3Þ

2
664

3
775; ð16Þ
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where

A ¼
�
r21 þ a2 þ b2

� ðr1r2Þ ðr1r3Þ
ðr1r2Þ

�
r22 þ a2 þ b2

� ðr2r3Þ
ðr1r3Þ ðr2r3Þ

�
r23 þ a2 þ b2

�
2
64

3
75: ð17Þ

Finally, the Gauss Seidel iterative equations can be written as

Unþ1

Vnþ1

Wnþ1

2
64

3
75 ¼ A�1

ða2 �Un þ b2Uls þ Vrr1Þ
ða2 �Vn þ b2Vls þ Vrr2Þ
ða2 �Wn þ b2Wls þ Vrr3Þ

2
664

3
775: ð18Þ

We perform this iteration until k~Vnþ1 �~V
nk2\0:001. Typically,

we need about 120 iterations to satisfy this condition.

VII. PROJECTION OF 3D FLOW

We project 3D velocity vectors onto a 2D image plane for display

purposes. A 3D point ~Pðx; y; zÞ that moves with full velocity ~V will

reach~P
0ðx0, y0, z0Þ after time t:

~P
0 ¼ ~Pþ~Vt

¼ ðX; Y; ZÞ þ ðVXt;VYt;VZtÞ
¼ ðX þ VXt; Y þ VYt; Z þ VZtÞ: ð19Þ

Then, we can project~P and~P
0
onto a 2D XY image plane at~p and~p0

respectively using perspective projection:

~p ¼ f X

f þ Z
;

f Y

f þ Z

� 	
; ð20Þ

~p 0 ¼ f ðX þ VXtÞ
f þ ðZ þ VZtÞ ;

f ðY þ VYtÞ
f þ ðZ þ VZtÞ

� 	
; ð21Þ

where ~m �~p0 �~p is the 2D projection velocity of ~V� f is the focal

length of our virtual camera, which we arbitrarily set to obtain

‘‘nice’’ looking images.

VIII. SYNTHETIC DOPPLER VELOCITY RESULTS

To assess the accuracy of the method, we applied our approach to

synthetic radial velocities. The correctness of the approaches and

their implementation can be tested by comparing the true and the

estimated velocity field on the surfaces of 15 cones, which have the

same coordinates and elevation angles as real Doppler radar rays.

The experimental process for the creation and analysis of syn-

thetic Doppler data has four steps:

1. Set artificial constant full velocity for each point on the

cones. The two examples we choose here are full velocities
~V1 ¼ ð20;0;0Þ and~V2 ¼ ð12;–16;20Þ.

2. Compute the artificial radial velocity for each point using the

constant full velocities. Since the radial velocity at some

atmospheric point can be viewed as the projection of the full

velocity at that point along its radial direction, we have

Vr¼~V � r̂¼ðVX;VY ;VZÞ�ðrX;rY ;rZÞ¼ VXX

R
;
VYY

R
;
VZZ

R

� 	
ð22Þ

where~V¼ðVX,VY ,VZÞ is the full velocity and r̂¼ðrX,rY ,rZÞ is
the unit vector that indicates the direction of the radial velocity.

r̂ is computed from the Cartesian coordinates, (X, Y, Z), of the
atmospheric point. The coordinate magnitude is given by

R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þY2þZ2

p
and is used for vector normalization.

3. Apply the least squares method to the step two radial veloc-

ities to estimate the 3D full velocity flow field.

4. Quantitatively compare the estimated velocities and the true

constant velocities at each point.

A. The Normal Distribution and N(0, r2) Gaussian
Noise. We add random mean zero Gaussian noise to the artificial

radial velocities, where the first argument of N(0, r2) is the mean

and r2 is the variance of the distribution. The method we use

to generate normally distributed Gaussian noise is by Teichroew

(Maisel and Gnugnoli, 1972). The procedure begins with the gen-

eration of 12 random numbers from a uniform distribution,

r1, r2, . . . , r12 2 ½0;1�. Then we compute

R ¼
P12

i¼1 ri

� �
� 6

4
ð23Þ

Finally, we compute

x ¼ C1R
9 þ C2R

7 þ C3R
5 þ C4R

3 þ C5R; ð24Þ

where C1 ¼ 0.029899776, C2 ¼ 0.008355968, C3 ¼ 0.076542912,

C4 ¼ 0.252408784, and C5 ¼ 3.949846138. The number x has the

desired standard normal distribution N(0,1).
After the generation of standardised normal numbers x, we can

generate numbers with any normal distributions by a simple linear

transformation. That is, if x is N(0,1) and X ¼ l þ rx, then X is in

N(l, r2). Thus, we use standard deviation r and mean l (usually we

let l ¼ 0) to adjust the value of x to add controlled amounts of

Gaussian noise n in N(0, r2) to the radial velocities.

B. Error Measurement. We evaluate the robustness of our

approaches by comparing the radial velocity input error /I and the

output error /O of the full velocities.

We report the input error of radial velocity after adding Gaus-

sian noise as

/I ¼
k~nk2
k~Vtk2

3100%; ð25Þ

where ~Vt and ~n are 3N vectors, consisting of the N triplets making

up the true (correct) radial velocities and the errors added to each

component of those radial velocities. We compute, ~ni, the ith veloc-

ity noise vector as

~ni¼ niXXiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i þY2

i þZ2
i

p ;
niYYiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
i þY2

i þZ2
i

p ;
niZZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
i þY2

i þZ2
i

p
 !

; ð26Þ

where the ith radial velocity is measured at (Xi, Yi, Zi) and~ni¼ðniX,niY ,
niZÞ is the Gaussian noise triplet added to the three components of

the ith radial velocity. For output error, we report:

/O¼
k~Vt�~Vek2

k~Vtk2
3100%; ð27Þ

where~Vt is the true 3N 3D full velocity vector and ~Ve is the 3N esti-

mated 3D full velocity vector.
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Figure 2. Real Doppler radar data obtained at time 199909161510 at elevation level 2. (a) and (c) Precipitation density, and (b) and (d) radial

velocity.

Figure 4. Visualization of least squares full velocities for noisy syn-

thetic radial velocities with 5.68% random Gaussian noise and 66.7%
density. The true artificial full velocity is~V1 ¼ ð12;�16;20Þ.

Figure 3. Visualization of least squares full velocities for noisy syn-

thetic radial velocities with 5.76% random Gaussian noise (r ¼ 1.0)
using the least squares method and 66.7% density. The true artificial

full velocities is~V1 ¼ ð20;0;0Þ.
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Although all points in a ‘‘neighbourhood’’ have the same full

velocity, there are some points that have no radial velocities,

because the full velocity is perpendicular to the radial rays, yielding

velocity projections along the ray of 0. Full velocity information

cannot be recovered at these locations. Taking the velocity calcula-

tion of these points into account makes the output error calculations

unreasonably high. To solve this problem, we threshold the radial

velocities to get rid of the ones which are too small to yield good

full velocities. In our calculation, we only consider radial velocities

>10, yielding a constant density* of computed full velocities of

66.7%. Figures 3 and 4 show the computed full velocity fields for
~V1 and~V2 with 5.76% and 5.68% random Gaussian noise (standard

deviation of 1.0). As mentioned earlier, the shades are the same as

those used by the Kurnell radar station to indicate radial velocity

magnitude and direction (towards or away from the radar). The

average magnitude and angle error for the two motions are given in

Tables I and II. Figure 5 shows the computed full velocity using

regularization, using the least squares constraint. In another article

(Chen et al., 2001b), we show that global regularization applied on

these least squares velocities can reduce the average magnitude and

angle error to <1% and 18 respectively.
Full velocities only at locations where the radial velocity magni-

tude is �5 are computed. Typically, un-aliased radial velocities

range from �40 to þ40. We also reject full velocity calculations

wherein the condition number of the least squares integration

matrix is �1,000,000. Typically, these condition numbers are

<30,000, but one did reach a value of 80,000,000 (an obvious out-

lier). Large condition numbers usually mean the radial velocities

are at a motion discontinuity, i.e., some radial velocities are nega-

tive while others are positive.

IX. REAL DOPPLER VELOCITY RESULTS

For the least squares approach, to solve full velocity ~V at a point,

we selected a small local neighbourhood around the point. Trial and

error led us to the observation that 7 3 7 3 7 neighbourhoods gave

the best results. We also examined the effect of smoothing the

radial velocity data before the least squares computation. The aver-

age value of the radial velocities in the 7 3 7 3 7 neighbourhood

of an atmospheric point, instead of the original radial velocity at

that point, was used to do the computation. Figures 6 and 7 illus-

trate computed full velocities using unblurred and blurred radial

velocities from the same dataset. The flow fields are smoother than

those without blurring shown in Figure 8. These results show that

smoothing the data before the velocity computation stage and

increasing the neighbourhood size produce better results. Figure 9

shows the computed full velocities using regularization with the

least squares constraints. Even with no smoothing of the radial

velocities the computed full velocity field is smooth. Finally,

Figure 10 shows the flows computed at time 200009251640 (2000,

September 25, 16:40 hrs) for elevations 2–5, while Figure 11 shows

the flows for the same elevations computed 40 min later at time

200009251700 (2000, September 25, 17:00 hrs). All the flows at

200009251640 are in the directions the Doppler clusters have

moved to at 200009251700. Numerous other flow calculation exam-

ples are available (Chen, 2001).

A. 3D Velocity Validation. In other work (Qiu, 2001; Qiu et al.,

2001; Mercer et al., 2002) we have hypothesized and tracked 3D

weather storms in Doppler precipitation data. Since these storms

are deforming rapidly over time, we use the notion of a ‘‘fuzzy’’

point (actually a 3D ellipsoid) to represent the uncertainty in the

position of a storm’s center of mass. We track these fuzzy points

over time using a fuzzy algebra (Mercer et al., 2002) and the

relaxation labelling framework we presented earlier (Cheng et al.,

1998). To evaluate the quality of the computed velocities in the

real data, we choose the velocity closest to a storm’s fuzzy center

as that storm’s velocity, project that ellipsoid onto the next dataset

and then compute the overlap between the projected and com-

puted ellipsoids at the second time instance. Our conjecture is that

the greater the overlap, the better the computed velocity is likely

to be.

B. Intersection Volume of Two Ellipsoids. To calculate the

intersection volume of two fuzzy storm ellipsoids (the predicted

ellipsoid and the actual fuzzy storm ellipsoid), first, we need to

obtain the predicted fuzzy storm ellipsoid center SC0(Cx
0, C0

y, C
0
z)

and radii r0x, r
0
y and r0z as

C0
x ¼ Cx1 þ U 3 t 3 0:06 ð28Þ

C0
y ¼ Cy1 þ V 3 t 3 0:06 ð29Þ

C0
z ¼ Cz1 þW 3 t 3 0:06; ð30Þ

where (Cx1, Cy1, Cz1) is the center of the initial fuzzy storm and

(C0
x, C

0
y, C

0
z) is the center of the predicted fuzzy storm, both after

time interval t (in minutes); the 0.06 factor comes from the conver-

sion of time into seconds from minutes and velocity (displacement)

into kilometers from meters. It should be noted that an assumption

that the size and shape of the hypothesized fuzzy storm remain

Table I. Input error (/I) and output error (/O) for LS and RþLS 3D

velocity measurements for the synthetic dataset with true full velocities
~V1 ¼ ð20; 0; 0Þ.a

r
Input Error

/I (%)

LS

/O LS (%)

RþLS

/O RþLS (%)

0.0 0.0 0.078 0.033

0.1 0.58 1.316 0.038

0.25 1.44 3.603 0.059

0.5 2.87 7.834 0.109

1.0 5.76 15.559 0.252

aControlled amounts of random Gaussian noise are added on radial velocities.

Table II. Input error (/I) and output error (/O) for LS and RþLS

3D velocity measurements for the synthetic dataset with true

full velocities ~V2 = (20,–16,20).a

r
Input Error

/I (%)

LS

/O LS (%)

RþLS

/O RþLS (%)

0.0 0.0 0.052 0.033

0.1 0.57 0.969 0.036

0.25 1.42 2.635 0.048

0.5 2.85 5.981 0.083

1.0 5.68 12.823 0.185

aControlled amounts of random Gaussian noise are added on radial velocities.* The percentage of locations with velocities after thresholding.
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Figure 5. Visualization of the computed full Doppler velocities using

regularization with the least squares velocity constraint from artificial

radial velocities with 5.68% random Gaussian noise and 61.1% den-

sity. The regularization was initialized with velocities of (0,0,0). The
true constant full velocity,~V, is (12,�16,20).

Figure 8. Computed full 3D velocity field at elevation 2 from the real

Doppler radial velocity dataset at time 200009251510 in a least
squares framework with a 7 3 7 3 7 neighbourhood with pre-

smoothing before the computation.

Figure 6. Computed full velocity field at elevation 2 from real

Doppler radial velocity dataset 200009251510 in a least squares
framework using 7 3 73 7 neighbourhoods without smoothing.

Figure 7. Computed full velocity field at elevation 2 from real

Doppler radial velocity dataset 200009251510 in a least squares

framework using 73 7 3 7 neighbourhood with smoothing before the
least squares computation stage.
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constant within the time interval t is made in the computation of the

predicted future positions of fuzzy storms (in general this is only

approximately true).

Second, we use the equation of an ellipsoid to determine

whether the points in the predicted fuzzy storm are inside the actual

fuzzy storm (or vice versa). So if (X, Y, Z) is the center of a voxel

that satisfies

ðX � CxÞ2
r2x

þ ðY � CyÞ2
r2y

þ ðZ � CzÞ2
r2z

� 1 ð31Þ

for both the actual and predicted ellipsoids, we count it as a part of

the intersection. A closed-form intersection would be desirable but

is an open area of research (for example, in 3D video game playing

Figure 9. Computed full 3D velocity field at elevation 2 from the real

Doppler radial velocity dataset at time 200009251510 using global
regularization with the least squares velocity constraint.

Table III. Velocity intersection values, fv, of the predicted and

actual fuzzy ellipsoidal storms.

Image1–Image2

Volume

Intersection (%)

199909161310-1320 87.62

199909161320-1330 90.17

199909161330-1340 95.00

Figure 10. The least squares full

velocity flow fields at elevation level

2 to 5 estimated from real radial vel-
ocity dataset obtained at time

200009251640.
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Figure 11. The least squares full velocity
flow fields at elevation levels 2 to 5 estimated

from real radial velocity dataset obtained at

time 200009251700.

Figure 12. Velocity at the center of mass of

the second storm in the reflectivity images:
(a) 199909161310, (b) 199909161320, (c)

199909161330 and (d) 199909161340.
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software
y
). After checking if every voxel is in an ellipsoid, we can

use the count of voxels in both actual and predicted storms as an

estimate of the volume of the ellipsoid intersection.

C. Volume Intersection Results. Figure 12 shows the 3D

velocity values computed for the ellipsoid center of storm 2. This is

the same dataset showing a large oblong storm moving from north-

east to southwest (Qiu et al., 2001). The velocities are shown as

vectors and can be seen to point in the direction of the storm’s dis-

placement. Table III shows the velocity intersection values, fv, for
fuzzy storms represented as ellipsoids (Qiu et al., 2001; Tang et al.,

2003a,b).

X. CONCLUSIONS

We have shown quantitatively on synthetic data with controlled

amounts of random Gaussian noise that we can accurately com-

pute full 3D velocity from 3D radial velocity. We have demon-

strated qualitatively (on real Doppler datasets) that we can com-

pute good (realistic) velocity fields. We found that the radial

velocities should be pre-smoothed before the least squares com-

putation to obtain the best results. The real velocities are always

in the direction of storm movement, indicating their general cor-

rectness and usefulness as a storm motion predictor. An intersec-

tion volume calculation for a number of different real storms at

different times showed that computed image velocity is a good

predictor for storm motion. Indeed, a velocity compatibility func-

tion is currently under design and will be used in the next version

of our 3D tracking algorithm (Tang et al., 2003a).
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