
3D Optical Flow Methods in Cardiac ImagingJ.V. Condell and yJ.L. BarronSchool of Computing and Intelligent Systems, Faculty of Engineering, University of Ulster,Magee College, Northland Road, Londonderry, BT48 7JLyDepartment of Computer Science, University of Western Ontario, London, Ontario,Canadafj.condell@ulster.ac.uk, ybarron@csd.uwo.cagABSTRACTHeart disease is a leading cause of death in the Western world and, as a result, the study of heart behaviour isbecoming increasingly important. In the UK coronary heart disease is the most costly disease and is the mostcommon cause of death. Transposing research results of digital image analysis into the medical domain is not anew idea. This paper discusses techniques for motion analysis in cardiac images. The quanti�cation of motionresults from such images can give insight into the hearts health and events a�ecting its performance. The aim isto develop a system, to compute 3D volumetric (optical) ow and, from this, assist in the identi�cation of heartwall motion abnormalities which will lead to diagnosis of heart diseases. This would allow the recovery of cardiacmotion with parameter extraction whose signi�cation would be easier for cardiologists to understand than pre-vious 3D analysis. Firstly, a review is carried out in the area of cardiac motion analysis. The computation of 3Dvolumetric optical ow on gated MRI datasets is discussed. The well known 2D least squares and regularizationapproaches of Lucas and Kanade13 and Horn and Schunck11 are extended. Flow �elds are shown (as XY and XZ2D ows) for a beating heart. The ow results not only can capture the expansion and contraction of variousparts of the heart motion but also can capture the twisting motion of the heart.Keywords: Cardiac Motion Analysis, Di�erential Techniques, Gated MRI Cardiac Datasets, Least SquaresTechniques, 3D Optical Flow 1. INTRODUCTIONThe true cost of heart disease in Britain is over $7 billion. The illness results in $3 billion of lost earnings in theeconomy and costs $1.73 billion to the UK's health care system.6 The disease is also the most common causeof death in the UK accounting for around 125000 deaths every year - approximately 1 in 4 deaths in men and1 in 6 deaths in women. Around 12% of people in the UK have been diagnosed with a disease of the heart andcirculatory system although fewer people are dying from it. Despite 30 years in decline, the UK death rate forheart disease is still one of the highest in Western Europe. Consequently study of normal and pathological heartbehaviour has become the topic of rigorous research.Medical image analysis is an important research domain involving assessment of diagnosis and preparation,control and evaluation of therapies. Since some diseases are related to the heart's beat pattern and motionanalysis, it may be possible to �nd relations between the heart wall motion and disease. Cardiac motionestimation is very important in understanding cardiac dynamics and non-invasive diagnosis of heart disease.The results gained from quantifying this motion can yield insight into the general health of the heart andprovide clues regarding speci�c events a�ecting cardiac performance.1.1. Cardiac ImagingThe medical community are greatly interested in the local motions of the left ventricular (LV) chamber whichpumps oxygenated blood to the body, as these are good indicators of heart function. The study of the shapeand motion of the heart is important because many heart diseases are thought to be strongly correlated to theshape and motion of the heart. Important examples of such heart disease include ischemia, infarction and rightventricle (RV) hypertrophy. During the cardiac cycle, the heart contracts and relaxes, and the estimation ofthe heart motion is used to detect and map functional changes due to cardiac ischemia or infarction. Thereforethe understanding of the heart mechanics is crucial in clinical research for diagnosis and patient study. Image



processing enables an accurate computation of the motion of the cavities, which could help cardiologists tolocalise ischemic or infarcted tissues and/or to evaluate the e�ects of a medicinal treatment.Imaging techniques such as Magnetic Resonance Imaging (MRI), Ultrasound (US), Computed Tomography(CT), X-ray provide methods to study internal organs in vivo. Typically MRI scanners enable scientists to takedetailed pictures and obtain images of the heart for research purposes and to help treat patients. A cross sectionimage (slice) of the heart is obtained. 3D slices are combined to generate a 3D volumetric model. Subsequentlythese images taken over time make 3D analysis possible. It is now possible to acquire good gated MRI data ofa human beating heart. That is, the signal from a patient is synchronised using an ECG to allow time binningof the acquired data into typically 16-20 frames per cardiac cycle. Data are acquired over many cardiac cyclesto produce the �nal set of frame images. This MRI data has high resolution compared to the alternative USdata. It also has good blood and tissue contrast and o�ers a wide topological �eld of view of the heart. UnlikeCT, MRI is non-invasive, i.e. it does not require a radiation dose. It is still challenging however to measurethe 3D motion that the heart is undergoing, in particular any motions with a physiological basis e.g. heart wallabnormalities are a good indicator of heart disease.1.2. Optical FlowWhen objects are being imaged through a camera or a human retina moving relative to the objects, the apparentmotion of brightness patterns is called the optical ow. The extraction of information from images may be splitinto two steps, the estimation of optical ow and the interpretation of the estimated ow �eld. Optical owhas been used mostly in the computer vision and arti�cial intelligence community since the late 1970's and itsestimation has been proposed as a pre-processing step for many high-level vision algorithms as it is a convenientand useful image motion representation.Great e�orts have been made to determine dense velocity and displacement vector �elds either by gradient-based approaches, correlation-type approaches or energy-based approaches. Gradient-based approaches computethe spatio-temporal derivatives, di�erentiating the image with respect to time and thus computing the optical ow�eld. These di�erential methods were found by many to produce accurate and relatively dense measurementsof two-dimensional velocity. They were analytically more tractable than other methods, leading to iterativelocal image operations. Horn and Schunck's method11 in particular is considered a benchmarking algorithm ofgradient-based di�erential methods, useful and powerful, yet simple and fast. Another well known method ofow �eld estimation is that of Lucas and Kanade.13 Their method �ts the measurements in each neighbourhoodto a local model for 2D velocity (e.g. a low-order polynomial model) using least-squares minimisation. Hornand Schunck on the other hand use global smoothness constraints (regularisation) in which the velocity �eld isde�ned implicitly in terms of the minimum of a functional de�ned over the image.11This paper sets out to provide a general review of the research in the area of cardiac imaging for optical owcomputation in particular to date. Section 2 looks at the more general techniques for modelling cardiac motion.Section 3 then describes recent research in the area which is comparing two of the most common methods foroptical ow computation (Horn and Schunck11 and Lucas and Kanade13) applied to MRI data. A descriptionof the equations involved and these particular methods used is given. Section 4 discusses results obtained withthese methods extended to 3D volumetric ow. A conclusion and discussion on future work is given in Section 5.2. TECHNIQUES FOR MODELLING CARDIAC MOTIONThere exists many di�erent types of approach for modeling cardiac motion. These methods range from volumetricmethods to block-based (or matching) methods and energy-based methods. Research in the measurement ofcardiac motion has dealt with 2D motion analysis of heart data8 but in essence this analysis should be carriedout as 3D over time to enable the capture of the true heart motions, for example the twisting motions undergoneby the heart in each beat cycle. In comparison to 2D image sequence analysis, 3D image sequence analysis has notreceived a great deal of attention. Primarily, this has been due to the lack of available imaging methods. Currentliterature has established the fact that as computational resources increase and time-varying data becomes moreavailable, so it is more feasible to compute full 3D optical ow �elds.



2.1. 3D Volumetric MethodsRecently work has been carried out on the computation of 3D volumetric optical ow on gated MRI datasets.3The well-known 2D Lucas-Kanade approach as well as the 2D Horn and Schunck approach (using �nite di�erencemethods) have been extended to produce ow �elds for a beating heart. The ow is shown to not only captureexpansion and contraction of part of the heart motion but also the twisting motion of the heart. Results showlower overall errors for the Horn-Schunck method than the Lucas-Kanade method. Section 3 describes theseresults.Gilland et al9 developed a processing method for gated cardiac emission CT that simultaneously reconstructedthe pixel intensities of the gated images and estimated the motion of the cardiac wall. They used conjugategradient optimisation with an objective function. The goal was to improve the quality of the gated images andthe accuracy of the estimated wall motion.2.2. Block-based and Energy-based MethodsBlock-based methods have been investigated in the analysis of echocardiograms for motion estimation.4 Cross-correlation and interpolation techniques were compared with the block matching region-of-interest strategies.Errors were reported and it was found that block matching techniques fail to estimate heart motion properlyover regions of constant or slow varying image intensity. Energy-based methods have also been analysed interms of cardiac motion estimation via optical ow calculations.12 The method was tested on arti�cially createdimage pairs and real-world test sets. Experiments showed that noise and other artifacts caused errors in the owestimation and so it was concluded that the algorithm had limited accuracy.2.3. Tracking MethodsOne obvious option for measuring 3D motion is to track 3D \interest" points. Unfortunately, MRI data allowstracking only for partial parts of the systole or diastole phases of the heart beat cycle because the magnetisationsignal weakens over time.17 Nonetheless it can allow tracking via correspondence of tagged markers.16 Theseare surgically implanted \markers" on the LV wall. Such work measures 3D motion to track 3D interest points,via correspondence of these markers to measure heart deformations.20 These types of methods all use shapemodels.Other research has explored the e�ects of image pre�ltering, multiresolution ow and multi-frequency pat-terns thorough controlled simulation experiments using the Horn and Schunck algorithm on tagged MRI images.1Tests showed that the use of a multiresolution optical ow approach with image pre�ltering achieved signi�cantperformance gains and permitted a factor of four in imaging time. It was demonstrated that the Horn-Schunckmethod performed better than other leading multiresolution approaches for optical ow. They reported sub-stantial improvements in optical ow performance with up to 3/4 less data using tagged MRI datasets.Tracking methods have been analysed based on matching techniques to detect motion of ventricular walls incardiac echocardiographic images looking at various regions of interest.14 It was claimed that cardiac motionanalysed through optical ow computation has a heavy calculation burden and so is di�cult to use in real-timeapplications. However it has been suggested that time can be saved if only the motion of some predeterminedpoints within the image are calculated. These points or areas of interest could lie on the ventricular wall or onthe muscle itself. Research has shown14 that a few points would be enough to perceive the motion pattern ofthe important zones. This is where the strength of future research lies: reducing computation while maintainingaccuracy by focusing on regions of interest only over a range of grid levels. This is what we call adaptive gridre�nement techniques for optical ow calculations.7 Section 5 will discuss future research in this area.2.4. Adaptive MethodsIn the area of adaptive grid re�nement, Benayoun and Ayache5 developed adaptive structured mesh motioncomputation methods on beating canine heart data using matching contours techniques. They computed owusing �nite element methods over an adaptively structured rectangular mesh in which the resolution depended onthe presence of high gradient norm points. This allowed reduction in time without decreasing accuracy althoughthe method incorrectly reports ow in areas where the norm measure does not pass a prede�ned threshold. Amethod proposed in Section 5.2 would improve on this method by allowing extra exibility through the use ofadaptive unstructured triangular meshes rather than structured rectangular meshes.



3. 3D VOLUMETRIC FLOWWith increased computational resources and the availability of time-varying data, it is becoming more and morefeasible to compute full 3D volumetric ow �elds. In this section two simple extensions to the 2D optical owsby Lucas and Kanade13 and Horn and Schunck11 are discussed. Algorithms were implemented in Tinatool,2,18an X windows based software package for Computer Vision algorithms.3.1. 3D Gated MRI DataAlgorithms were tested on gated MRI data obtained from the Robarts Research Institute at the University ofWestern Ontario.15 Various sets of this data each contain 20 volumes of 3D volumetric data for one synchronizedheart beat, with each 3D volume dataset consisting of either 256�256�31 (axial view) or 256�256�75 (coronalview) with voxel intensities (unsigned shorts) in the range [0 � 4095] (12 bits or gray values). The axial viewdata is a long-axis view (top-down from head to feet) of the heart. For the smaller datasets the resolution is1.5mm in the x and y dimensions and 5.0mm in the z dimension while the larger datasets have 1.5mm resolutionin all 3 dimensions. The heart motion is discontinuous in space and time (downwards): di�erent chambers inthe heart are contracting/expanding at di�erent times and the heart as a whole undergoes a twisting motion asit beats.The word \gated" refers to the way the data is collected: 1 or a few slices of each volume set are acquired at thesame time instance in a cardiac cycle. A patient lies in an MRI machine and holds his breath for approximately42 second intervals to acquire each set of slices. This data acquisition method relies on the patient not movingor breathing during the acquisition (this minimizes heart motion caused by a moving diaphragm): the result canbe mis-alignment in adjacent slices in the heart data at a single time. One way to correct this mis-alignment ispresented in Moore et al.15 Figures 1 and 2 provide a good example of slice mis-alignment. For the 5phase.9.36ows there is signi�cant motion detected at the borders of the chest cavity. For the 10phase.16.36 ows thereis little motion in this area as the adjacent slices in the data are better aligned. The MRI data is prospectively(versus retrospectively) acquired: the MRI machine uses an ECG for the patient to gate when to acquire a givenphase. Thus it has to leave a gap between cycles while waiting for the next R wave. This means the data isnot uniformly sampled in time; rather there is a di�erent time interval between the last and �rst datasets thenbetween the other datasets.3.2. 3D Optical Flow Constraint EquationDi�erential optical ow is always based on some version of the optical ow constraint equation. Much workhas been carried out in 2D.7 In 3D, it is assumed that the image intensity at the point (x; y; z) in the imageplane at time t is denoted by u(x; y; z; t) = u(x + �x; y + �y; z + �z; t + �t). That is, a small n � n � n 3Dneighbourhood of voxels centered at (x; y; z) at time t translate to (x+ �x; y + �y; z + �z) at time t + �t. A 1storder Taylor series expansion of u(x+ �x; y + �y; z + �z; t+ �t) yields:u(x+ �x; y + �y; z + �z; t+ �t) = u(x; y; z; t) + @u@x�x+ @u@y �y + @u@z �z + @u@t �t: (1)Since u(x+ �x; y + �y; z + �z; t+ �t) = u(x; y; z; t) the optical ow constraint equation is:uxb1 + uyb2 + uzb3 + ut = 0; (2)where b1 = �x�t , b2 = �y�t and b3 = �z�t are the 3D velocity components (b � (b1(x; y; z; t); b2(x; y; z; t); b3(x; y; z; t))at time t > 0) and ux, uy, uz and ut denote the partial derivatives of image intensity with respect to x, y, z andt respectively (@u@x ; @u@y ; @u@z and @u@t ). The image intensity values are known (u(x; y; z; t)) and it is the optical ow(b) that is unknown and to be approximated.



3.3. 3D Lucas and KanadeUsing the 3D motion constraint equation, uxb1 + uyb2 + uzb3 = �ut, a constant 3D velocity is assumed, b =(b1; b2; b3), in a local n � n� n 3D neighbourhood. Lucas and Kanade solve:b = [ATW 2A]�1ATWC; (3)where, for N = n� n � n: A = [ru(x1; y1; z1); :::;ru(xN; yN ; zN )]; (4)W = diag[W (x1; y1; z1); :::; W (xN ; yN ; zN )]; (5)C = �(ut(x1; y1; z1); :::; ut(xN ; yN ; zN )): (6)W is a weighting matrix which here has all its diagonal elements set to 1.0. Eigenvalue/eigenvector analysis ofATW 2A is performed to compute eigenvalues �3 � �2 � �1 � 0. Those full 3D velocities with �1 > �D areaccepted as reliable (here �D is 1.0).3.4. 3D Horn and SchunckThe optical ow constraint Equation 2 cannot fully determine the ow but can give the component of the owin the direction of the intensity gradient. An additional constraint must be imposed to ensure a smooth vari-ation in the ow across the image. The computation of optical ow may then be treated as a minimisationproblem for the sum of the errors in the equation for the rate of change of image intensity and the measureof the departure from smoothness in the velocity �eld. The 2D Horn and Schunck regularization10 is extendedin 3D. Finite-volume approximations to the coupled equations are obtained for the ow components b1, b2 andb3, and these are rearranged to produce a simultaneous iteration scheme from which a new set of velocity es-timates (b1n+1; b2n+1; b3n+1) are computed at each voxel from combinations of the previous velocity estimates(b1n; b2n; b3n) at surrounding voxels. The iterative Gauss Seidel equations that solve the Euler-Lagrange equa-tions derived from this functional are:bn+11 = �b1n � ux �ux �b1 + uy �b2 + uz �b3 + ut�(�2 + u2x + u2y + u2z) ; (7)bn+12 = �b2n � uy �ux �b1 + uy �b2 + uz �b3 + ut�(�2 + u2x + u2y + u2z) ; (8)bn+13 = �b3n � uz �ux �b1 + uy �b2 + uz �b3 + ut�(�2 + u2x + u2y + u2z) : (9)A smoothing parameter is incorporated into the motion equations (here � was typically 1.0 or 10.0). The numberof iterations was typically 100 (200 iterations were also ran with di�erences in results seeming insigni�cant).3.5. 3D Di�erentiationRegardless of the optical owmethod used, the image intensity derivatives must be computed. Here Simoncelli's19matched balanced �lters for low pass �ltering (blurring) [p5 in Table 1] and high pass �ltering (di�erentiation)[d5 in Table 1] are used.3 Matched �lters allow comparisons between the signal and its derivatives as the highpass �lter is simply the derivative of the low pass �lter and, from experimental observations, yields more accuratederivative values. Before performing Simoncelli's �ltering, the simple averaging �lter suggested by Simoncelli,�14 ; 12 ; 14�, is used to slightly blur the images.



k p5 d50 0.036 -0.1081 0.249 -0.2832 0.431 0.03 0.249 0.2834 0.036 0.108Table 1. Simoncelli's 5-point Matched/Balanced Kernels4. RECENT EXPERIMENTAL RESULTSThe Horn and Schunck and Lucas and Kanade algorithms have been tested with 3D synthetic sinusoidal data(with constant motion) where the correct ow is known.3 The overall single error measure for Lucas and Kanadewas 0:340%�0:003% in the velocity magnitudes and 0:276��0:001� in the velocity directions while for the Hornand Schunck (100 iterations) it was 0:044% � 0:004% in the velocity magnitudes and 0:195� � 0:001� in thevelocity directions. The overall accuracy shows the correctness of the two 3D algorithms.Figures 1 and 2 show the XY and XZ ow �elds for the 36th slice of the 256� 256� 75 coronal MRI datasets(5phase.9 and 10phase.16) for Lucas and Kanade and Horn and Schunck algorithms respectively. It can beseen that the ow �eld smoothing in Horn and Schunck makes the ow �elds visibly more pleasing. There areobvious outliers due to poor di�erentiation results that are not completely eliminated by the Horn and Schuncksmoothing. Nevertheless, the ows capture the essential heart motion, which includes expansion and contractionof its 4 chambers plus a twisting motion. Results are only shown here for the expansion volumes (9th and 16thvolumes). The ow on the chest cavity for the 36th slice of the 5phase.9 data indicates that the data is notregistered. Indeed the diaphragm that the heart is resting on has signi�cant motion in the 5phase.9 data. Flowat the chest cavity borders is not present in the 36th slice of the 10phase.16 data, indicating this data is betterregistered and the ow more reliable.The computational times for these ow calculations are large. Typical times are reported for a 750MHzlaptop having 256MB of main memory and running RedHat Linux. For the 5phase.9 and 10phase.9 datasetssigni�cant paging and virtual memory use was obvious. Di�erentiation took about 1 hour, Lucas and Kanadeabout 0.5 hours and Horn and Schunck about 2 hours. These calculations are not real time!5. CONCLUSIONSThis paper has set out to provide a general review of cardiac motion techniques. It has described some recentresearch in the area comparing the common methods of Lucas and Kanade and Horn and Schunck. A summaryis now provided of these results with suggestions for future work to make improvements on them.5.1. Summary of 3D resultsResults reported are a preliminary start to research into the measurement of complex motions of a beating heart,by way of comparing two common methods (Horn and Schunck and Lucas and Kanade). Subjectively, the 3DHorn and Schunck ows often look better that the 3D Lucas and Kanade ows. One problem is that the qualityof the ow is directly dependent on the quality of the derivatives. Subsequently, the coarse sampling nature ofthe gated data and the registration mis-alignments in adjacent slices of the data probably cause serious problemsfor di�erentiation. These ows can be improved on considerably. There is a lack of texture in the heart tissueitself therefore good di�erentiation methods are essential. Another problem with the MRI data is that the 3Dmotion is discontinuous at places in space and time. After all, di�erent but adjacent parts of the heart aremoving di�erently: there are 4 chambers deforming in di�erent ways, with discontinuities between the motions.The current computational resources required for one of these 3D ow calculations is high. Although neitherthe acquisition or optical ow calculations are anywhere near real-time, this type of processing will be quitefeasible in the years to come, especially with advances in both computational resources and MRI technology. IfMoore's law (processing power doubles every 18 months) continues then by 2010 we'll easily have 20GHz laptops



LK-XY-9-36 (5phase) LK-XZ-9-36 (5 phase)
LK-XY-16-36 (10phase) LK-XZ-16-36 (10phase)Figure 1. The Lucas and Kanade XY and XZ ow �elds superimposed on the 36th slice of the 9th and 16th volumes ofthe 5phase and 10phase data for �D = 1:0.with 32GB of main memory. This would allow a reasonable time analysis of these datasets (� 5 minutes) usingthese current algorithm implementations (which are correct but not optimal). Both of these algorithms also caneasily be implemented on a SIMD parallel machine, where, given su�cient individual processor power, couldmake these calculations \real-time".5.2. Future Work and Improvements using a Finite Element ApproachError results have not been provided here for the heart data (real data). However reconstruction error is apossibility.7 Also this research has focused primarily on motion calculation with little consideration of e�ciencyimprovements by way of time reduction without loss of accuracy. Recent research has demonstrated an alternativemethod to optical ow computation in image sequences. It uses the original optical ow constraint equation ofHorn and Schunck combined with a �nite element solution. The novelty of the two-dimensional �nite elementapproach is in the ease and economic means of implementation using �nite element tables. Improvements wereshown for various �nite element methods over the equivalent Horn and Schunck method. It gave an alternativemodel for motion computation which showed exibility through a variety of grid discretisations. An adaptiveapproach7 involving a non-uniform multi-resolution triangular discretisation was shown to reduce computationalcomplexity while providing more e�cient and accurate ow estimation. The adaptive approach speeds up overallprocessing time as the variable mesh facilitates a reduction in computational e�ort by enabling processing tofocus only on areas where motion occurs. In many cases methods developed perform better than existing methodsin the literature showing fruitful directions for research combining �nite element approaches with adaptive multi-



HS-XY-9-36 (5phase) HS-XZ-9-36 (5phase)
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