CS3388 FINAL EXAMINATION MASTER Monday April 62020 9:00 am to Tuesday April 79:00 pm

NAME:	Not Required
STUDENT NUMBER:	Not Required

- This examination counts for 20% towards your final mark
- This examination has 10 questions
- All questions are multiple choice
- Choose only one answer per question
- You are allowed all printed materials, your own Python programs, and web resources that you see fit
- Submit your answers as a text file in OWL: The file should contain only one line with your 10 answers, and nothing else

Question 1 (2 marks): Suppose a generic sphere is placed into a scene by the following homogeneous transformation matrix:

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and a ray $r(t)=e+\vec{d} t$, where $e=(5,5,5,1)^{T}$ and $\vec{d}=(-1,-1,-1,0)^{T}$. What is the ray in homogeneous notation once it is transformed with matrix M^{-1} ?
A) $e=(4,4,5,1)^{T}$ and $\vec{d}=(-1,-1,-1,0)^{T}$
B) $\quad e=(6,6,5,1)^{T}$ and $\vec{d}=(0,0,-1,0)^{T}$
C) $e=(5,5,5,1)^{T}$ and $\vec{d}=(0,0,-1,0)^{T}$
D) $e=(6,6,5,1)^{T}$ and $\vec{d}=(-1,-1,-1,0)^{T}$
E) $\quad e=(4,4,5,1)^{T}$ and $\vec{d}=(0,0,-1,0)^{T}$

Question 2 (2 marks): Following your answer to Question 1, what is the smallest t-value at which the transformed ray intersects the generic sphere?
A) 5.3333
B) 6.0
C) 3.0
D) 4.0
E) 4.6667

Question 3 (2 marks): Following your answer to Question 2, what are the 3D coordinates in homogeneous notation of the intersection point that the transformed ray makes with the generic sphere?
A) $(-1.3333,-1.3333,-0.3333,1)^{T}$
B) $(-2,-2,-1,1)^{T}$
C) $(1,1,2,1)^{T}$
D) $(0,0,1,1)^{T}$
E) $\quad(-0.6666,-0.6666,0.3333,1)^{T}$

Question 4 (2 marks): In which coordinate system the intersection point from the previous question was obtained?
A) World coordinates
B) Camera coordinates
C) Image coordinates
D) Pixel coordinates
E) Generic coordinates

Question 5 (2 marks): The implicit equation for the hyperboloid of one sheet is given by $x^{2}+y^{2}-z^{2}-1=0$. Given a ray $r(t)=e+\vec{d} t$, what are the coefficients a, b, c in the polynomial $a t^{2}+2 b t+c=0$ which yields the t-values of the ray-hyperboloid intersections?
A) $\quad a=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \quad b=e_{x} d_{x}+e_{y} d_{y}+e_{z} d_{z} \quad c=e_{x}^{2}+e_{y}^{2}+e_{z}^{2}$
B) $\quad a=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \quad b=e_{x} d_{x}+e_{y} d_{y}+e_{z} d_{z} \quad c=e_{x}^{2}+e_{y}^{2}+e_{z}^{2}-1$
C) $\quad a=d_{x}^{2}+d_{y}^{2}-d_{z}^{2} \quad b=e_{x} d_{x}+e_{y} d_{y}-e_{z} d_{z} \quad c=e_{x}^{2}+e_{y}^{2}-e_{z}^{2}-1$
D) $a=d_{x}^{2}+d_{y}^{2} \quad b=e_{x} d_{x}+e_{y} d_{y} \quad c=e_{x}^{2}+e_{y}^{2}-1$
E) $\quad a=d_{y}^{2}+d_{z}^{2} \quad b=e_{y} d_{y}+e_{z} d_{z} \quad c=e_{y}^{2}+e_{z}^{2}-1$

Question 6 (2 marks): What is a normal vector in homogeneous notation at any given point on the surface of the hyperboloid of one sheet from the preceding question?
A) $(x, 2 y,-z, 0)^{T}$
B) $(x, y,-z, 0)^{T}$
C) $(2 x, 2 y, 2 z, 0)^{T}$
D) $(x, y, z, 0)^{T}$
E) $(-2 x,-2 y, z, 0)^{T}$

Question 7 (2 marks): Suppose a generic sphere is placed in world coordinates in a scene by the following transformation matrix:

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where is the centre of the sphere in world coordinates (expressed non-homogeneously) once it is placed in the scene by matrix M ?
A) $(0,0,0)^{T}$
B) $(1,2,3)^{T}$
C) $(3,2,1)^{T}$
D) $(2,1,1)^{T}$
E) $(1,1,2)^{T}$

Question 8 ($\mathbf{2}$ marks): Suppose we have a light located at $(5,5,10,1)^{T}$ in world coordinates. Also suppose we have a generic sphere placed and scaled in the world coordinate system by matrix

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with its inverse is given by

$$
M^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 / 2 & 0 & -1 / 2 \\
0 & 0 & 1 / 3 & -2 / 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Given the ray $r(t)=e+\vec{d} t$ where $e=(11,21,32,1)^{T}$ and $\vec{d}=(-1,-2,-3,0)^{T}$, what is the normal vector in generic coordinates at the closest ray-sphere intersection in homogeneous notation?
A) $(0.5774,0.5774,0.5774,0)^{T}$
B) $(0.4082,0.4082,0.4082,0.7071)^{T}$
C) $(1,1,2,0)^{T}$
D) $(1,2,3,0)^{T}$
E) $(-0.5774,0.5774,-0.5774,0)^{T}$

Question 9 ($\mathbf{2}$ marks): From Question 8, what is the normalized vector in generic coordinates from the intersection point to the light source in homogeneous notation?
A) $(0.3911,0.3911,0.8316,0)^{T}$
B) $(0.8044,0.3344,0.4910,0)^{T}$
C) $(0.5774,0.5774,0.5774,0)^{T}$
D) $(0.4082,0.4082,0.4082,0.7071)^{T}$
E) $(1,1,2,0)^{T}$

Question 10 (2 marks): From Question 8, what is the normalized vector in generic coordinates from the intersection point to the centre of the camera in homogeneous notation?
A) $(0.5774,0.5774,0.5774,0)^{T}$
B) $(0.4082,0.4082,0.4082,0.7071)^{T}$
C) $(1,1,2,0)^{T}$
D) $(1,2,3,0)^{T}$
E) $\quad(-0.5774,0.5774,-0.5774,0)^{T}$

