CS3388 FINAL EXAMINATION MASTER Monday April 6 2020 9:00 am to Tuesday April 7 9:00 pm

NAME:	Not Required
STUDENT NUMBER:	Not Required

- This examination counts for 20% towards your final mark
- This examination has 10 questions
- All questions are multiple choice
- Choose only one answer per question
- You are allowed all printed materials, your own Python programs, and web resources that you see fit
- Submit your answers as a text file in OWL: The file should contain only one line with your 10 answers, and nothing else

Question 1 (2 marks): Suppose a generic sphere is placed into a scene by the following homogeneous transformation matrix:

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and a ray $r(t)=e+\vec{d}t$, where $e=(5,5,5,1)^T$ and $\vec{d}=(-1,-1,-1,0)^T$. What is the ray in homogeneous notation once it is transformed with matrix M^{-1} ?

A) $e = (4,4,5,1)^T$ and $\vec{d} = (-1,-1,-1,0)^T$ B) $e = (6,6,5,1)^T$ and $\vec{d} = (0,0,-1,0)^T$ C) $e = (5,5,5,1)^T$ and $\vec{d} = (0,0,-1,0)^T$ D) $e = (6,6,5,1)^T$ and $\vec{d} = (-1,-1,-1,0)^T$ E) $e = (4,4,5,1)^T$ and $\vec{d} = (0,0,-1,0)^T$ CS-3388 Computer Graphics Final Examination April 6 2020

Question 2 (2 marks): Following your answer to Question 1, what is the smallest *t*-value at which the transformed ray intersects the generic sphere?

- A) 5.3333
- B) 6.0
- C) 3.0
- D) 4.0
- E) 4.6667

Question 3 (2 marks): Following your answer to Question 2, what are the 3D coordinates in homogeneous notation of the intersection point that the transformed ray makes with the generic sphere?

A) $(-1.3333, -1.3333, -0.3333, 1)^T$

B)
$$(-2, -2, -1, 1)^{7}$$

- C) $(1, 1, 2, 1)^T$
- **D)** $(0,0,1,1)^T$
- E) $(-0.6666, -0.6666, 0.3333, 1)^T$

CS-3388 Computer Graphics Final Examination April 6 2020

Question 4 (2 marks): In which coordinate system the intersection point from the previous question was obtained?

- A) World coordinates
- B) Camera coordinates
- C) Image coordinates
- D) Pixel coordinates
- E) Generic coordinates

Question 5 (2 marks): The implicit equation for the hyperboloid of one sheet is given by $x^2+y^2-z^2-1=0$. Given a ray $r(t)=e+\vec{d}t$, what are the coefficients a,b,c in the polynomial $at^2+2bt+c=0$ which yields the *t*-values of the ray-hyperboloid intersections?

A)
$$a = d_x^2 + d_y^2 + d_z^2$$
 $b = e_x d_x + e_y d_y + e_z d_z$ $c = e_x^2 + e_y^2 + e_z^2$
B) $a = d_x^2 + d_y^2 + d_z^2$ $b = e_x d_x + e_y d_y + e_z d_z$ $c = e_x^2 + e_y^2 + e_z^2 - 1$
C) $a = d_x^2 + d_y^2 - d_z^2$ $b = e_x d_x + e_y d_y - e_z d_z$ $c = e_x^2 + e_y^2 - e_z^2 - 1$
D) $a = d_x^2 + d_y^2$ $b = e_x d_x + e_y d_y$ $c = e_x^2 + e_y^2 - 1$

E)
$$a=d_y^2+d_z^2$$
 $b=e_yd_y+e_zd_z$ $c=e_y^2+e_z^2-1$

Question 6 (2 marks): What is a normal vector in homogeneous notation at any given point on the surface of the hyperboloid of one sheet from the preceding question?

A) $(x, 2y, -z, 0)^T$

B)
$$(x, y, -z, 0)^T$$

C) $(x, y, -z, 0)^{T}$ D) $(x, y, z, 0)^{T}$

D)
$$(x, y, z, 0)^2$$

E) $(-2x, -2y, z, 0)^T$

Question 7 (2 marks): Suppose a generic sphere is placed in world coordinates in a scene by the following transformation matrix:

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where is the centre of the sphere in world coordinates (expressed non-homogeneously) once it is placed in the scene by matrix M?

- A) $(0,0,0)^T$
- B) $(1,2,3)^{T}$
- C) $(3,2,1)^{T}$
- D) $(2,1,1)^T$
- E) $(1,1,2)^T$

Question 8 (2 marks): Suppose we have a light located at $(5,5,10,1)^T$ in world coordinates. Also suppose we have a generic sphere placed and scaled in the world coordinate system by matrix

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with its inverse is given by

$$M^{-1} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1/2 & 0 & -1/2 \\ 0 & 0 & 1/3 & -2/3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Given the ray $r(t)=e+\vec{d}t$ where $e=(11,21,32,1)^T$ and $\vec{d}=(-1,-2,-3,0)^T$, what is the normal vector in generic coordinates at the closest ray-sphere intersection in homogeneous notation?

- A) $(0.5774, 0.5774, 0.5774, 0)^T$
- B) $(0.4082, 0.4082, 0.4082, 0.7071)^T$
- C) $(1,1,2,0)^{T}$
- D) $(1,2,3,0)^T$
- E) $(-0.5774, 0.5774, -0.5774, 0)^T$

Question 9 (2 marks): From Question 8, what is the normalized vector in generic coordinates from the intersection point to the light source in homogeneous notation?

- A) $(0.3911, 0.3911, 0.8316, 0)^T$
- **B)** $(0.8044, 0.3344, 0.4910, 0)^T$
- C) $(0.5774, 0.5774, 0.5774, 0)^T$
- D) $(0.4082, 0.4082, 0.4082, 0.7071)^T$
- E) $(1,1,2,0)^T$

Question 10 (2 marks): From Question 8, what is the normalized vector in generic coordinates from the intersection point to the centre of the camera in homogeneous notation?

- A) $(0.5774, 0.5774, 0.5774, 0)^T$
- B) $(0.4082, 0.4082, 0.4082, 0.7071)^T$
- C) $(1,1,2,0)^{T}$
- D) $(1,2,3,0)^{T}$
- E) $(-0.5774, 0.5774, -0.5774, 0)^T$