
CS-3388 Computer Graphics Winter 2020

Table of Contents
Two-Dimensional Clipping Algorithms...1

Clipping Lines... 1
Cohen-Sutherland's Line Clipping Algorithm...1
Calculating Intersections... 2
The Algorithm... 2
Liang and Barsky's Clipping Algorithm..3
The Algorithm... 5
Polygon Clipping...5
Raster Scan Polygon Filling.. 6
Adjusting Segment Endpoints... 8

Two-Dimensional Clipping Algorithms

The viewport is a region of the window in which graphics are displayed. The transformations
from world coordinates, to camera coordinates, to window coordinates, and finally to viewport
coordinates usually results in only a part of the scene being visible, and hence the need to
clip lines to the viewport in 2D. Suppose a point (x , y) . It is inside the viewport if

Clipping Lines

If both endpoints of a line lie inside the viewport, no clipping is necessary, as the line segment
is completely visible. If only one endpoint is within the viewport, then we must clip the line at
the intersection. If both endpoints are outside the viewport, then the line crosses two
boundaries, or is completely outside the viewport.

Cohen-Sutherland's Line Clipping Algorithm

The viewing space is divided into nine encoded regions as shown below:

For each endpoint of a line segment, we assign a 4-bit code following the rules below (the

Xmin≤x≤Xmax

Y min≤ y≤Y max

CS-3388 Computer Graphics Winter 2020

code is formed in the following way: (bit 1, bit 2, bit 3, bit 4):

1. bit 1 is 1 if x<X min

2. bit 2 is 1 if x>X max

3. bit 3 is 1 if y<Y min

4. bit 4 is 1 if y>Y max

Hence, if (x1, y1) and (x2, y2) have code 0000 then both end points are inside. If both
endpoints have a 1 in the same bit position, then the line segment is entirely outside.
Performing a logical AND on both codes and obtaining something different from 0000
indicates that the line is outside. Otherwise, the line segment must be checked for
intersections.

Calculating Intersections

With a vertical boundary, x is either Xmin or Xmax . Hence:

or

For a horizontal boundary, y is either Y min or Y max . Hence:

or

The Algorithm

The inputs to the algorithm are the two endpoints of a line segment, and the attributes of the
viewport. The output is the clipped line segment.

begin

if (p1 and p2 inside) then accept and return

else {

 while (code of p1 != 0000) do {

y= y1+(y2− y1

x2−x1
)(Xmin−x1)

y= y1+(y2− y1

x2−x1
)(X max−x1)

x=x1+(Y min− y1)(x2−x1

y2− y1
)

x=x1+(Y max− y1)(x2−x1

y2− y1
)

CS-3388 Computer Graphics Winter 2020

 if (p1 is outside)

 if (p1 is to the left) {

 p1 = inters. of p1 p2 and x=X min ;

compute new code for p1 ;

 }

 else if (p1 is to the right) {

 p1 = inters. of p1 p2 and x=X max ;

 compute new code for p1 ;

 }

 else if (p1 is below) {

 p1 = inters. of p1 p2 and y=Y min ;

compute new code for p1 ;
 }

 else if (p1 is above) {

 p1 = inters. of p1 p2 and y=Y max ;

 compute new code for p1 ;

 }

 }

 repeat these steps for p2

}

output p1 and p2

end

Midpoint Division Method

This technique consists of locating intersections without computing them with a binary search.
First, compute the midpoint of the segment, and divide the segment into two as per the
midpoint. For these two segments, test if they are totally inside or totally outside of the
viewport and either accept or reject the segments accordingly. Repeat for each segment that
cannot be either accepted or rejected.

Liang and Barsky's Clipping Algorithm

This algorithm uses the parametric form of line equations, written as:

CS-3388 Computer Graphics Winter 2020

where u∈[0,1] . Using this particular form of equations then we can write that when the
following inequalities are satisfied

then the line segment lies completely within the window. These inequalities can be written as

for k=1,2,3,4 .

k=1 p1=−Δ x q1=x1−Xmin Left boundary

k=2 p2=Δ x q2=Xmax−x1 Right boundary

k=3 p3=−Δ y q3= y1−Y min Bottom boundary

k=4 p4=Δ y q4=Y max− y1 Top boundary

If pk=0 then the line segment is parallel to the k th boundary:

1. p1=−Δ x=0 and the line is vertical and parallel to the left and right boundaries

2. if q1≤0 or q2≤0 then the line segment is completely outside the window.

Hence, if (p1=0)∧(q1≤0∨q2≤0) the line segment is completely outside. The same rules
apply for p3 and we can write that if (p3=0)∧(q3≤0∨q4≤0) then the segment is also
outside. In general, if qk≥0 then the line is inside the k th boundary.

In cases when the line segment is not parallel to any of the view port’s borders, then if
pk<0 the infinite extension of the line segment proceeds from outside to inside the infinite

extension of the k th window boundary. The opposite situation occurs when pk>0 .

Consequently, when pk≠0 , we compute the value of u that yields the intersection of the
extended line segment with the extended k th boundary. The value of u is given by
equating the initial inequalities:

and thus, the intersection of the extended line segment with the k th boundary is simply
given by:

(x
y)=(x1

y1
)+(x2−x1

y2− y1
)u=(x1

y1
)+(Δ x

Δ y)u

Xmin≤x1+Δ xu≤Xmax

Y min≤ y1+Δ yu≤Y max

pk u≤qk

pk u=qk

u=
qk

pk

CS-3388 Computer Graphics Winter 2020

The Algorithm

Computing u1 :

 for all pk<0 {

 rk=
qk

pk

 u1=max {0, rk }

 }

Computing u2 :

 for all pk>0 {

 rk=
qk

pk

 u2=min{1,r k}

 }

The main body of the algorithm is:

begin

 compute pk and qk , for k=1,2, 3, 4

 if [(p1=0)∧(q1<0∨q2<0)]∨[(p3=0)∧(q3<0∨q4<0)] then reject the segment

 else

 compute u1

 compute u2

 if u1>u2 then reject the segment

 else

 clipped line segment is (x1+Δ xu1, y1+Δ y u1) , (x1+Δ xu2, y1+Δ y u2)
end

Polygon Clipping

Polygons need to be clipped when objects to render are made with them. Polygons are
represented as ordered sets of vertices. An intuitive approach to clip polygons is to trace the
vertices that are completely inside the viewport, and get rid of those that are completely
outside. For all other vertices, and using their parametric representation, we can determine if
they are tracked from the outside toward the inside of the area of the viewport, and
conversely. Below is a simple example where the intersections of the vertices are all within
the same boundary. All that is needed after clipping is to create a vertex joining the two

CS-3388 Computer Graphics Winter 2020

intersections, and the polygon is clipped.

However, this simple method will not work when the intersections are not all with the same
boundary. When this is the case, the polygon must be adjusted to include the part of the
viewport that finds itself inside it.

In order to perform this type of polygon clipping, we must first know how to compute
intersections when the segments are given in parametric form. Consider:

and let's find the intersection between p⃗1=(x1, y1), (x2, y2) and p⃗2=(x3, y3) ,(x4, y4) :

and find (u , v) values such that p⃗1= p⃗2 . We can write this equality as:

and rearrange it in the following way:

This is then simply a 2 by 2 linear system of equations that need to be solved. If the lines are
not parallel, it has a solution for (u , v)T which yields the intersection point.

Raster Scan Polygon Filling

Rendering polygons imply filling them with color, texture, etc. Here is a simple scan-line
algorithm to do just this, with the following steps:

(x
y)=(x1

y1
)+(Δ x

Δ y)u

p⃗1 = x⃗1+Δ x⃗1u
p⃗2 = x⃗2+Δ x⃗2 v

(x
y)=(x2−x1

y2− y1
)u+(x1

y1
)=(x4−x3

y4 – y3
)v+(x3

y3
)

(x2−x1 x3−x4

y2− y1 y3− y4
)(uv)=(x3−x1

y3− y1
)

CS-3388 Computer Graphics Winter 2020

1. Determine the number of scan lines. The first scan line starts at the minimum y value
of all edge points while the last scan line is at the maximum y value of all edge
points.

2. Create an edge list containing all the edges from the polygon, trace the horizontal
edges and remove them from the list.

3. For each scan line, do:

• create a list of active edges from the edge list. These are the edges that make an
intersection with the scan line.

• Find all intersections between the scan line and the edges from the list of active
edges

• Sort the edges by intersection, in increasing order of their x coordinates, and form
a sorted intersection list.

• Proceeding one intersection at a time, and forming an intersection pair with the next
intersection, determine if the two intersections correspond to edge endpoints. If so,
then test if the the two intersections are unequal. If this is the case, make the left
intersection equal to the right intersection in the pair. If the intersections in the pair
are equal (we have two edges that meet at the same coordinates with their end-
points) and if one segment goes up while the other goes down, (starting from the
intersection point), remove the duplicate intersection from the intersection list.

• Now that the intersection list is processed, start tracing from the fist intersection to
the next, then stop tracing until the following intersection, then resume tracing until
the next intersection, and so on.

To implement this algorithm efficiently, it is important to observe that each scan line has a
y value one pixel lower than the previous scan line and thus:
• y i+1= yi−1

• slope of segment is m=
y i+1− y i

x i+1−x i

• which implies x i+1=xi−
1
m

This is how successive intersections are obtained for each scan line in an efficient manner.
Other elements must be taken into consideration for a fast implementation:

• Find the bounding box of the polygon to determine the number of scan lines and their
length.

• Maintain a list of segments that are crossed by the current scan line. That is, create a
list of segments sorted in increasing order of their largest y and, if two segments
have the same maximum y coordinates, sort them in decreasing order of their
smallest y values.

• With such a sorted list, the segments crossed by the current scan line form a

CS-3388 Computer Graphics Winter 2020

contiguous sub-list within the sorted list.

Adjusting Segment Endpoints

Instead of dealing with the number of intersections where the segments meet on the scan
lines, we could also simply perform minor adjustments to the points of the polygons to ensure
that each time an intersection is encountered, we either start or stop turning on pixels. On the
following page are displayed all the cases (to the left) and how they should be dealt with (to
the right).

While this technique will slightly modify the appearance of the polygon at low resolutions, it is
virtually undetectable with current resolutions and speeds up the scan-line algorithm.

CS-3388 Computer Graphics Winter 2020

Illustration 1: Cases in need of endpoint
adjustments

	Two-Dimensional Clipping Algorithms
	Clipping Lines
	Cohen-Sutherland's Line Clipping Algorithm
	Calculating Intersections
	The Algorithm
	Liang and Barsky's Clipping Algorithm
	The Algorithm
	Polygon Clipping
	Raster Scan Polygon Filling
	Adjusting Segment Endpoints

