CS-3388 Computer Graphics Fall Winter 2020

Table of Contents

Algorithms for Assignment 4 Classes and Methods............ccveeciiiiiiiiienieiie e 1
Method: minimumlIntersection(self,direction,0bjectList):.......cccevvuiiiriiiriiiie e 1
Shader: _init (self,intersection,direction,camera,objectList,light):.........c.cccccoeviiiviiniiniiiniieieenen. 1
Helper: method _ shadowed(self,object,],S,0bjeCtLiSt):.....c.eeriiiiiiiiiiiieie e 3

Algorithms for Assignment 4 Classes and Methods

This document describes the algorithms that need to be implemented for the
successful completion of assignment 4.

Method: minimumIintersection(self,direction,objectList):

Input: direction is the vector describing the direction of the ray; objectList is a
list of objects composing the scene.

Output: Returns a list of tuples (k.7,) where k is the position in the list of an
object that the ray intersects, and ¢, is the minimum f-value of the intersection
the ray makes with the object. This list is sorted in increasing order of the t-
values.

Algorithm:
« create empty intersection list
- for each object in the list:

o M~' =inverse of matrix 7T associated with object

o transform the ray with A" in the following way: 7,=M'e , where e
is the position of the camera, and 7,=M"'d , where d is the direction
of the ray

o t,= object.intersection (7,,T,)

o if t,#-1.0 then add tuple (k.#,) to intersection list
« sort intersection list in increasing order of ¢,
* return intersection list

Shader: __init__ (self,intersection,direction,camera,objectList,light):

Input: intersection is the first (k,7,) tuple from the intersection list; direction is
the vector describing the direction of the ray; objectlList is a list of objects
composing the scene, and light is a lightSource object.

CS-3388 Computer Graphics Fall Winter 2020

Output: Computes the shaded color for pixel (i,j) as instance variable
self. color

Algorithm:

consider tuple (k,z,) from intersection

object = objectList [£]

t, is the t-value associated with object from tuple («,¢,)
M~" =inverse of matrix 7 associated with object

T, = light position transformed with ™

transform the ray with a7~ in the following way: 7,=M"'e , where e is
the position of the camera, and 7,=M"'d , where d is the direction of
the ray

compute the intersection pointas 7=7,+T7t,

compute vector from intersection point to light source position as
S=(T,—1I) , and normalize it

compute normal vector at intersection point as
N= object.normalVector (/)
compute specular reflection vector as R=—5+(2S-N)N
compute vector to center of projection V=7,-1 , and normalize it
compute I,=max{N-S,0} and I,=max{R-V 0}
r= object.getReflectance()
c= object.getColor()
L= light.getintensity()

if the intersection point is not shadowed by other objects e.g. this is a call
to helper method shadowed (object, I , § ,objectList):

o compute f=r[0]+r[1]id+r[2]1,"
else:

o compute f=r[0]

compute tuple self. color = (f(c[0]L,[0],c[1]L,[1],c[2]L,[2]))

CS-3388 Computer Graphics Fall Winter 2020

Helper: method __shadowed(self,object,|,S,objectList):

Input: object is that which there is an intersection with; 7 is the intersection
point; S is the vector to the light source, and objectList is a list of objects
composing the scene.

Output: Returns true if the ray from the intersection point to the light source
intersects with an object from the scene, and returns false otherwise.

Algorithm:
« M =matrix T associated with object

« compute /=M (I+eS) where ¢=0.001 . This operation detaches the
intersection point from its surface, and then transforms it into world
coordinates

 compute s=MmS . This transforms S into world coordinates
» for object in objectList:
o M~' =inverse of matrix T associated with object

o compute /=m"'7 . This transforms the intersection point into the
generic coordinates of the object

o compute s=m"'s and normalize s . This transforms the vector to the
light source into the generic coordinates of the object

o if object.intersection (7,5) # —1.0 : (this means there is an
intersection with another object)

= return True

 return False

	Algorithms for Assignment 4 Classes and Methods
	Method: minimumIntersection(self,direction,objectList):
	Shader: __init__ (self,intersection,direction,camera,objectList,light):
	Helper: method __shadowed(self,object,I,S,objectList):

