
CS-3388 Computer Graphics Fall Winter 2020

Table of Contents
Algorithms for Assignment 4 Classes and Methods.. 1

Method: minimumIntersection(self,direction,objectList):.. 1
Shader: __init__ (self,intersection,direction,camera,objectList,light):... 1
Helper: method __shadowed(self,object,I,S,objectList):.. 3

Algorithms for Assignment 4 Classes and Methods

This document describes the algorithms that need to be implemented for the
successful completion of assignment 4.

Method: minimumIntersection(self,direction,objectList):

Input: direction is the vector describing the direction of the ray; objectList is a
list of objects composing the scene.

Output: Returns a list of tuples (k , t0) where k is the position in the list of an
object that the ray intersects, and t 0 is the minimum t-value of the intersection
the ray makes with the object. This list is sorted in increasing order of the t-
values.

Algorithm:

• create empty intersection list

• for each object k in the list:

◦ M −1 = inverse of matrix T associated with object

◦ transform the ray with M −1 in the following way: T e=M−1 e , where e

is the position of the camera, and T d=M −1 d , where d is the direction
of the ray

◦ t 0= object.intersection (T e ,T d)

◦ if t 0≠−1.0 then add tuple (k , t0) to intersection list

• sort intersection list in increasing order of t 0

• return intersection list

Shader: __init__ (self,intersection,direction,camera,objectList,light):

Input: intersection is the first (k , t0) tuple from the intersection list; direction is
the vector describing the direction of the ray; objectList is a list of objects
composing the scene, and light is a lightSource object.

CS-3388 Computer Graphics Fall Winter 2020

Output: Computes the shaded color for pixel (i , j) as instance variable
self.__color

Algorithm:

• consider tuple (k , t0) from intersection

• object = objectList [k]

• t 0 is the t-value associated with object from tuple (k , t0)

• M −1 = inverse of matrix T associated with object

• T s = light position transformed with M −1

• transform the ray with M −1 in the following way: T e=M−1 e , where e is
the position of the camera, and T d=M −1 d , where d is the direction of
the ray

• compute the intersection point as I=T e+T d t 0

• compute vector from intersection point to light source position as
S=(T s− I) , and normalize it

• compute normal vector at intersection point as

N = object.normalVector (I)

• compute specular reflection vector as R=−S+(2 S⋅N)N

• compute vector to center of projection V =T e− I , and normalize it

• compute I d=max {N⋅S ,0} and I s=max {R⋅V ,0}

• r= object.getReflectance()

• c= object.getColor()

• Li= light.getIntensity()

• if the intersection point is not shadowed by other objects e.g. this is a call
to helper method __shadowed(object, I , S ,objectList):

◦ compute f =r [0]+r [1] Id +r [2] I s
r[3]

• else:

◦ compute f =r [0]

• compute tuple self.__color = (f (c [0] Li [0] , c[1] Li [1] , c [2]L i[2]))

CS-3388 Computer Graphics Fall Winter 2020

Helper: method __shadowed(self,object,I,S,objectList):

Input: object is that which there is an intersection with; I is the intersection
point; S is the vector to the light source, and objectList is a list of objects
composing the scene.

Output: Returns true if the ray from the intersection point to the light source
intersects with an object from the scene, and returns false otherwise.

Algorithm:

• M = matrix T associated with object

• compute I=M (I+ϵS) where ϵ=0.001 . This operation detaches the
intersection point from its surface, and then transforms it into world
coordinates

• compute S=MS . This transforms S into world coordinates

• for object in objectList:

◦ M −1 = inverse of matrix T associated with object

◦ compute I=M −1 I . This transforms the intersection point into the
generic coordinates of the object

◦ compute S=M −1 S and normalize S . This transforms the vector to the
light source into the generic coordinates of the object

◦ if object.intersection (I , S) ≠ −1.0 : (this means there is an
intersection with another object)

▪ return True

• return False

	Algorithms for Assignment 4 Classes and Methods
	Method: minimumIntersection(self,direction,objectList):
	Shader: __init__ (self,intersection,direction,camera,objectList,light):
	Helper: method __shadowed(self,object,I,S,objectList):

