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Fractals
Fractals are mathematical objects defined in fractional dimensions. They were first developed
by a French mathematician named Dr. Benoit Mandelbrot. The use of fractals in computer
graphics are many, including irregular terrain or surface generation. 

We can easily model irregular surfaces using fractal geometry. Fractals have two fundamental
characteristics: infinite detail and at every scale and self-similarity at a given scale. Fractal
curves or surfaces have a fractal dimension, and the length of a fractal curve in the Euclidean
sense is infinite,  since there is an infinite amount of detail  at  every scale of a fractal.  An
example of this peculiar phenomenon can be experienced while zooming on a coastline from
above. At the coarsest level one sees a rough outline of the coast, but at finer levels more and
more details appear such as boulders, rocks and stones, and eventually grains of sand, and
molecules. Yet at all scales the general aspect of the coastline remains identical.

Koch Curves

A fractal curve can be generated by repeatedly applying a specified transformation function to
points within a region of space. The amount of detail present in the final view depends on the
number of iterations and the finest resolution available. An example of a self-similar fractal is
given by Koch curves. A the start, two line segments of equal length on an axis are angled as
the one face of a regular triangle. Then, each one of these two segments is divided in 3 sub-
segments of equal length, and the middle segment is split in two and made as a regular
triangle once again, as depicted below:

Illustration 1: A typical Koch curve
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Under this transformation, it can be easily shown that the total length of the curve increases
by four thirds at each iteration, and that the fractal dimension of this curve is given by:

where n is the number of subdivisions at each step, and s is the scaling factor. For the
curve depicted above, we have:

Theoretically, a fractal curve such as this one has an infinite number of iterations and detail. In
practice, the number of iterations must remain finite and thus the curve ends up with a finite
length.

Self-Squaring Fractals

Many fractal curves are generated using functions in the complex plane. Consider a complex
number z=x+iy where i=√−1 .  We  define  the  norm  of  this  complex  number  in  the
complex  plane  as √ x2+ y 2 and  refer  to  it  as  the  magnitude  of  the  complex  number.  If

f (z)= z 2=(x+i y)2=x 2+i2xy+(iy )2=x2− y2+i2xy ,  and   an  iteratively  defined  complex
number  is  given  by  applying  this  formula  to  the  result  (such as  in f ( f ( z)) ),  then the
sequence of complex numbers converges to 1 if the magnitude of z is smaller than one and
diverges otherwise. For some functions, the boundary between those points that tend towards
infinity and those that converge, is a fractal curve known as the Julia set. 

The squaring transformation  z '= f ( z)=λ z (1−z)=λ( z− z2) with λ some constant, is rich
in fractal curves. Rearranging terms yields z 2=z−z ' / λ=0 , and we compute the inverse of

z ' as:

Given some point on the inside (norm of z is smaller than one) or outside (norm of z is
greater than one), convergence towards points on the fractal curve ( z=1 ) is obtained.

d= ln n

ln (1
s )

n=4 s= 1
3

d=1.2619

z= f −1( z ' )= 1
2 (1±√1− 4 z '

λ )

Illustration 2: An example of the Julia set
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Mandelbrot Fractal Set

The  Mandelbrot  set  is  a  set  of  complex  numbers  that  do  not  diverge  under  squaring
transformations:

We  select  an  initial  value z0 ,  and  compute z1=z0
2+ z0 ,  and  iteratively  continue  as  in

z 2=z1
2+ z0 until  we can determine if the values are diverging ( ∥zk∥>k ) or a maximum

number of iterations has been reached. Then, each initial value for z0 is chosen as a point
on the complex plane, and its color dictated by the number of iterations needed to achieve
convergence. These values are then plotted into an image to create a fractal display. 

Statistically Self-Similar Fractals

How can we transform a triangle into a mountain, including the sum of the small details? If we

start with a triangle the shape of the mountain we want, then we can select a random point on
each edge of the triangle, and apply a displacement along the edges corresponding to the
random numbers. Then joining these displaced points with line segments and repeating the
process to the desired level of detail  results in a form or random tessellation that can be
textured to give the illusion of a mountain range as in the picture below:

z0 = z

z k = zk −1
2 +z0  for k=1,2,3

Illustration 3: A zoom into the Mandelbrot set
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This  technique  can  be  applied  to  assembled  triangles  of  all  dimensions.  It  is  useful  to
generate realistic renderings of terrain for which only GPS coordinates are available, after
adequate  tessellation.  Techniques  similar  to  this  are  used  to  provide  the  public  with
renderings of planet surfaces that are scanned by probes and satellites from NASA. There is
quite a number of natural phenomena that are modeled very accurately with fractals. These
are new mathematics (historically) and give us a hope in our ability to understand more about
the world and how we see it. 

Generating Fractal Terrain

We  can  create  realistic  terrain  (including  mountain  ranges)  using  randomness  and  self-
similarity. We define a roughness constant h that determines how the range of generated
random numbers is reduced at each iteration. A high value for h will result in smooth terrain.

In order to simulate random terrain we need an array (2D) of height values mapping indices
( x , y ) to height values z . 

Algorithm

• Define a large 2D square array of side size 2n+1 , ans set the four corner points of
this array to identical height values

• The square array midpoint value is obtained by averaging the four corners and adding
a random value to it

• Set the square's four sides midpoints by averaging the two closest corner points and

Illustration 4: Mountain range generated with statistically
self-similar fractals
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adding a random value, for each midpoint

• Repeat  this  process  until  the  2D  array  is  filled.  At  each  iteration,  the  range  of
acceptable  random  numbers  should  be  multiplied  by  = 2−h ,  where h is  the
roughness constant

Illustration 5: The steps involved in generating terrain

Illustration 6: Rough terrain

Illustration 7: Rough terrain after 
a few iterations
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