CS3388 MIDTERM EXAMINATION MASTER Monday March 22020 12:30pm to 2:20pm

NAME:	
STUDENT NUMBER:	

- This examination counts for 20% towards your final mark
- This examination has 15 questions
- All questions are multiple choice
- Choose only one answer per question
- Do not turn this page until instructed to do so
- Write your answers on the Scantron sheet
- Nothing written in this booklet will be marked
- You are allowed two double-sided 8.5 " by 11 " cheat sheets and a simple scientific calculator

TABLE OF TRANSFORMATIONS USED IN THIS EXAMINATION

2D non-homogeneous rotation:
$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

2D homogeneous rotation:

$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

3D non-homogeneous rotations:

$R_{x}(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right] \quad R_{z}(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

3D homogeneous rotations:

$$
R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D non-homogeneous translation column vectors:

$$
T_{x}(a)=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right] \quad T_{y}(a)=\left[\begin{array}{l}
0 \\
a \\
0
\end{array}\right] \quad T_{z}(a)=\left[\begin{array}{l}
0 \\
0 \\
a
\end{array}\right]
$$

Question 1 (1 mark): Two 2D quantities are expressed in homogeneous coordinates as $a_{1}=(3,5,0)^{T}$ and $a_{2}=(3,5,1)^{T}$. What statement is true about them?
A) a_{2} is the perspective projection of a_{1}
B) a_{1} is the perspective projection of a_{2}
C) a_{1} is a 2D vector and a_{2} is a 2D point
D) a_{1} is a 2D point a_{2} is a 2D vector
E) None of the above

Question 2 (1 mark): What is the angle (in radians) between the following 3D vectors in nonhomogeneous notation: $\vec{v}_{1}=(1,2,3)^{T}$ and $\vec{v}_{2}=(2,0,4)^{T}$?
A) 0.4359
B) 0.3124
C) 0.5796
D) 1.5202
E) None of the above

$$
\begin{aligned}
& \cos \theta=\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{2}\right\|} \\
& \theta=\cos ^{-1}\left(\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{\left\|\vec{v}_{1}\right\|\left\|\vec{v}_{2}\right\|}\right)=\cos ^{-1}\left(\frac{(1,2,3) \cdot(2,0,4)}{\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{2^{2}+0^{2}+4^{2}}}\right)=0.5796
\end{aligned}
$$

Question 3 (1 mark): Suppose we have two 3D, non-parallel vectors \vec{v}_{1} and \vec{v}_{2} in nonhomogeneous notation. What is true about vector $\vec{v}_{3}=\vec{v}_{1} \times \vec{v}_{2}$?
A) \vec{v}_{3} is orthogonal to \vec{v}_{2} and parallel to \vec{v}_{1}
B) \vec{v}_{3} is orthogonal to \vec{v}_{1} and parallel to \vec{v}_{2}
C) The magnitude of \vec{v}_{3} is equal to the area of the parallelogram subtended by \vec{v}_{1} and \vec{v}_{2}
D) The square root of the magnitude of \vec{v}_{3} is equal to the area of the parallelogram subtended by \vec{v}_{1} and \vec{v}_{2}
E) None of the above

Question 4 (2 marks): Consider the 2D matrix in non-homogeneous notation:
$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
By how many degrees does this matrix rotate a 2D point $p=(x, y)^{T}$?
A) -45.0 degrees
B) -90.0 degrees
C) -135.0 degrees
D) 0.0 degrees
E) None of the above
$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}\cos \left(90^{\circ}\right) & -\sin \left(90^{\circ}\right) \\ \sin \left(90^{\circ}\right) & \cos \left(90^{\circ}\right)\end{array}\right]$ This matrix rotates points by 90°.

Question 5 (2 marks): Which one of the following 3D non-homogeneous rotation matrix multiplications yields a parametric representation of a sphere of unit radius centered at the origin of a 3D coordinate system?
A) $\quad R_{z}(u) R_{y}(v)\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
B) $\quad R_{x}(u) R_{z}(v)\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
C) $\quad R_{y}(u) R_{x}(v)\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
D) $\quad R_{z}(u) R_{x}(v)\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
E) All of the above

Question 6 (2 marks): Given a square plane $P_{0}(u, v)$ of side length equal to 1 with corner points given by $(0,0,0)^{T},(1,0,0)^{T},(0,1,0)^{T},(1,1,0)^{T}$, what are the non-homogeneous transformations that need to be applied to $P_{0}(u, v)$ in order to obtain six planes $P_{1}(u, v), P_{2}(u, v), \ldots, P_{6}(u, v)$ that form a cube of side length equal to 1 ? (assume a right-handed 3D coordinate system)
A) $\quad P_{1}(u, v)=P_{0}(u, v), \quad P_{2}(u, v)=R_{y}(-\pi / 2) P_{0}(u, v)$,

$$
P_{3}(u, v)=R_{x}(\pi / 2) P_{0}(u, v) \quad, \quad P_{4}(u, v)=P_{0}(u, v)+T_{z}(1),
$$

$$
P_{5}(u, v)=P_{3}(u, v)+T_{y}(1), \quad P_{6}(u, v)=P_{2}(u, v)+T_{x}(1)
$$

B) $\quad P_{1}(u, v)=P_{0}(u, v), P_{2}(u, v)=R_{y}(-\pi / 4) P_{0}(u, v)$,
$P_{3}(u, v)=R_{x}(\pi / 2) P_{0}(u, v), P_{4}(u, v)=P_{0}(u, v)+T_{z}(1)$,
$P_{5}(u, v)=P_{3}(u, v)+T_{y}(1), \quad P_{6}(u, v)=P_{2}(u, v)+T_{x}(1)$
C) $\quad P_{1}(u, v)=P_{0}(u, v), \quad P_{2}(u, v)=R_{y}(\pi / 2) P_{0}(u, v)$,
$P_{3}(u, v)=R_{x}(-\pi / 4) P_{0}(u, v), P_{4}(u, v)=P_{0}(u, v)+T_{z}(1)$,
$P_{5}(u, v)=P_{3}(u, v)+T_{y}(-1), \quad P_{6}(u, v)=P_{2}(u, v)+T_{x}(1)$
D) $\quad P_{1}(u, v)=P_{0}(u, v), \quad P_{2}(u, v)=R_{y}(\pi / 2) P_{0}(u, v)$,
$P_{3}(u, v)=R_{x}(-\pi / 2) P_{0}(u, v) \quad, \quad P_{4}(u, v)=P_{0}(u, v)+T_{z}(1)$,
$P_{5}(u, v)=P_{3}(u, v)+T_{y}(1) \quad, \quad P_{6}(u, v)=P_{2}(u, v)+T_{x}(1)$
E) None of the above

- $\quad P_{1}(u, v)=P_{0}(u, v)$ forms the bottom plane of the cube
- $\quad P_{2}(u, v)=R_{y}(-\pi / 2) P_{0}(u, v)$ forms the back-right plane of the cube
- $\quad P_{3}(u, v)=R_{x}(\pi / 2) P_{0}(u, v)$ forms the back-left plane of the cube
- $\quad P_{4}(u, v)=P_{0}(u, v)+T_{z}(1)$ forms the top plane of the cube
- $\quad P_{5}(u, v)=P_{3}(u, v)+T_{y}(1)$ forms the front-right plane of the cube
- $\quad P_{6}(u, v)=P_{2}(u, v)+T_{x}(1)$ forms the front-left plane of the cube

Question 7 (2 marks): Given the following parametric form: $P(v)=P_{1}+\left(P_{2}-P_{1}\right) v$ where $P_{1}=(1,0,0)^{T}$ and $P_{2}=(0,0,1)^{T}$ with $0 \leq v \leq 1$, what type of parametric object is $Q(u, v)=R_{z}(u) P(v)$ if $0 \leq u<2 \pi$ and matrix $R_{z}(u)$ is non-homogeneous?
A) a cylinder
B) a cone
C) a sphere
D) a plane
E) None of the above

Question 8 (2 marks): Suppose we have three 3D non-homogeneous column vectors $\vec{u}, \vec{v}, \vec{n}$ forming an orthonormal basis inside the world coordinate system. Let $M=[\vec{u}, \vec{v}, \vec{n}]$. If $P=(x, y, z)^{T}$, then what does the multiplication $M P$ do?
A) it transforms the point P from the 3D space defined by M into the world coordinate system
B) it transforms the point P from the world coordinate system into the 3D space defined by M
C) it rotates the point P by $\vec{u} \cdot(\vec{v} \times \vec{n})$
D) it rotates the point P by $\vec{n} \cdot(\vec{u} \times \vec{v})$
E) None of the above

Question 9 (1 mark): What is a 2D series of transformation matrices in homogeneous notation that rotates a homogeneous 2 D point $p=(x, y, 1)^{T}$ around a non-homogeneous 2 D point $c=\left(c_{x}, c_{y}\right)$ by an angle u ?
A) $\left[\begin{array}{ccc}1 & 0 & -c_{x} \\ 0 & 1 & -c_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos u & -\sin u & 0 \\ \sin u & \cos u & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & c_{x} \\ 0 & 1 & c_{y} \\ 0 & 0 & 1\end{array}\right]$
В) $\left[\begin{array}{ccc}1 & 0 & -c_{x} \\ 0 & 1 & -c_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos u & -\sin u & 0 \\ 0 & 1 & 0 \\ \sin u & \cos 1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & c_{x} \\ 0 & 1 & c_{y} \\ 0 & 0 & 1\end{array}\right]$
C) $\left[\begin{array}{ccc}1 & 0 & -c_{x} \\ 0 & 1 & -c_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ \sin u & \cos u & 0 \\ \cos u & -\sin u & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & c_{x} \\ 0 & 1 & c_{y} \\ 0 & 0 & 1\end{array}\right]$
D) $\left[\begin{array}{lll}1 & 0 & c_{x} \\ 0 & 1 & c_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos u & -\sin u & 0 \\ \sin u & \cos u & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -c_{x} \\ 0 & 1 & -c_{y} \\ 0 & 0 & 1\end{array}\right]$
E) None of the above

Question 10 (1 mark): Given a 3D point $P=(X, Y, Z)^{T}$, what is $p=(X / Z, Y / Z, 1)$?
A) p is a perspective projection of P onto an imaging plane located at $Z=N P$, where $N P$ stands for the near plane
B) $\quad p$ is a perspective projection of P onto an imaging plane located at $Z=-1$
C) $\quad p$ is a perspective projection of P onto an imaging plane located at $Z=0$
D) p is a perspective projection of P onto an imaging plane located at $Z=-N P$
E) None of the above
$p=(X / Z, Y / Z, 1)$ is a perspective projection of P onto an imaging plane located at $Z=1$

Question 11 (1 mark): The camera matrix is composed of the following matrices:
$W S_{2} T_{2} S_{1} T_{1} M_{p} M_{v}$. What matrix (or matrices) would need to be updated if we only changed the position of the camera and nothing else?
A) $S_{2}, T_{2}, S_{1}, T_{1}, M_{p}, M_{v}$
B) $S_{1}, T_{1}, M_{p}, M_{v}$
C) M_{p}, M_{v}
D) M_{v}
E) W

Question 12 (1 mark): Suppose we have a 3D point $P=(X, Y, Z)^{T}$ to which we apply a series of non-homogeneous 3D transformations: $Q=M_{1} M_{2} M_{3} P$. What is the correct suite of transformations that brings Q back into P ?
A) $\quad M_{1} M_{2} M_{3} Q$
B) $\quad M_{1}^{T} M_{2}^{T} M_{3}^{T} Q$
C) $\quad M_{3}^{-1} M_{2}^{-1} M_{1}^{-1} Q$
D) $\quad M_{3}^{T} M_{2}^{T} M_{1}^{T} Q$
E) None of the above

Question 13 (1 mark): Suppose we have two 2D unit vectors $\vec{e}_{1}=(1,0)^{T}$ and $\vec{e}_{2}=(0,1)^{T}$, representing the axes of a coordinate system A. We want to find a transformation that brings any point from coordinate system A into coordinate system B with unit vectors $\vec{u}_{1}=(\sqrt{2} / 2,-\sqrt{2} / 2)^{T}$ and $\vec{u}_{2}=(\sqrt{2} / 2, \sqrt{2} / 2)^{T}$. What is the 2D non-homogeneous matrix that performs this transformation?
A) $\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]$
B) $\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]^{T}$
C) $\left[\begin{array}{r}-\overrightarrow{u_{1}^{T}} \\ -\overrightarrow{u_{2}^{T}}\end{array}\right]^{T}$
D) $\left[\begin{array}{ll}\vec{u}_{2} & \vec{u}_{1}\end{array}\right]^{T}$
E) None of the above

Question 14 (1 mark): Suppose we have a 2D composite transformation $T=R(\theta) R^{T}(\theta)$ in homogeneous coordinates where

$$
R(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and $\theta>0$. What is the effect of performing this transformation on a point $p=[x, y, 1]^{T} ?$
A) it rotates the point clockwise by an amount θ
B) it rotates the point counter-clockwise by an amount θ
C) it rotates the point counter-clockwise by an amount 2θ
D) it rotates the point clockwise by an amount θ^{2}
E) it has no effect on the point
$T=R(\theta) R^{T}(\theta)=R(\theta) R^{-1}(\theta)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ The transformation has no effect on the point.

Question 15 (1 mark): We are given a 3D non-homogeneous vector $\vec{V}=\left(V_{x}, V_{y}, V_{z}\right)^{T}$. What is the result of writing it out in homogeneous coordinates and transforming it with the following homogeneous transformation matrix:

$$
M=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & a \\
0 & s_{y} & 0 & b \\
0 & 0 & s_{z} & c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A) $\vec{V}=\left(s_{x} V_{x}, s_{y} V_{y}, s_{z} V_{z}, 0\right)^{T}$
B) $\quad \vec{V}=\left(a+s_{x} V_{x}, b+s_{y} V_{y}, c+s_{z} V_{z}, 1\right)^{T}$
C) $\vec{V}=\left(a+V_{x}, b+V_{y}, c+V_{z}, 1\right)^{T}$
D) $\vec{V}=\left(s_{x}+a V_{x}, s_{y}+b V_{y}, s_{z}+c V_{z}, 1\right)^{T}$
E) None of the above

$$
M=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & a \\
0 & s_{y} & 0 & b \\
0 & 0 & s_{z} & c \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{x} \\
V_{y} \\
V_{z} \\
0
\end{array}\right]=\left[\begin{array}{c}
s_{x} V_{x} \\
s_{y} V_{y} \\
s_{z} V_{z} \\
0
\end{array}\right] \text { Vectors always have their homogeneous components set to } 0 .
$$

