Table of Contents
Points and Vectors in Space 1
Vector Addition 1
Scalar Multiplication 1
Linear Combination 2
Vector Length 2
Vector Dot Product 2
3D Cross Product 3

Points and Vectors in Space

A point in n dimensional space represents a position in space and is given by a tuple $\boldsymbol{p}=\left(p_{1,}, p_{2}, \ldots, p_{n}\right)^{T}$ where p_{i} are scalars. The position of a point is relative to a coordinate system with an origin given by $O=(0,0, \ldots, 0)^{T}$ and unit axes $\vec{u}_{1}=(1,0, \ldots, 0)^{T}, \vec{u}_{2}=(0,1,0, \ldots, 0)^{T}, \ldots, \vec{u}_{n}=(0,0, \ldots, 1)^{T}$. Hence, a 3D point is written as $\boldsymbol{p}=(x, y, z)^{T}$, and a 2D point, as $\boldsymbol{p}=(x, y)^{T}$.

A vector in n dimensional space represents a direction and is given by a tuple $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}$ where v_{i} are scalars. A vector is the result of the subtraction of two points. For example the vector $\vec{v}(1,2)^{T}$ is the result of the subtraction of two points $\vec{v}(1,2)=\boldsymbol{p}(1,2)^{T}-\overrightarrow{0}^{T}$. In general, a vector is obtained by subtraction of two points. The resulting vector represents the direction and the distance between the points. Thus we can write, for any two points $\boldsymbol{p}_{1,} \boldsymbol{p}_{2}: \vec{v}=\boldsymbol{p}_{2}-\boldsymbol{p}_{1}$. It follows directly that $\boldsymbol{p}_{1}+\vec{v}=\boldsymbol{p}_{2}$. Adding a vector to a point results in a point.

Vector Addition

Vector addition is defined as $\vec{v}=\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)$ and has the following properties:

1. Associative: $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$
2. Commutative: $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
3. Vector-Point Associative: $P+(\vec{u}+\vec{v})=(P+\vec{u})+\vec{v}$

Scalar Multiplication

Scalar multiplication is defined as $a \vec{v}=\left(a v_{1}, a v_{2}, \ldots, a v_{n}\right)$ and has the following properties:

1. Scalar associative: $(a b) \vec{v}=a(b \vec{v})$
2. Scalar distributive: $(a+b) \vec{v}=a \vec{v}+b \vec{v}$
3. Vector distributive: $a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v}$

Linear Combination

There is one case for which adding points together makes sense. We define a linear combination of points p_{i} as

$$
\boldsymbol{p}=\sum_{i=1}^{n} a_{i} \boldsymbol{p}_{i}
$$

A linear combination of points for which

$$
\sum_{i=1}^{n} a_{i}=1
$$

is called an affine combination of points.

Vector Length

The length of a vector is known as its magnitude and is defined as

$$
\|\vec{v}\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

A unit length vector is a vector of length equal to one. Any vector can be scaled in such a way as to have a length of one:

$$
\hat{v}=\frac{1}{\|\vec{v}\|} \vec{v}
$$

Vector Dot Product

The dot product between two vector is defined as

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

and has the following properties:

1. Vector length: $\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}$
2. Scalar associative: $(a \vec{u}) \cdot(b \vec{v})=a b(\vec{u} \cdot \vec{v})$
3. Commutative $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
4. Addition distributive $\vec{u} \cdot(\vec{v}+\vec{w})=(\vec{u} \cdot \vec{v})+(\vec{u} \cdot \vec{w})$
5. $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$, where θ is the angle between the vectors

This last property is useful in many circumstances. In addition, if both vectors are normalized to unit length, then we have $\hat{u} \cdot \hat{v}=\cos \theta$ and hence $\theta=\cos ^{-1}(\hat{u} \cdot \hat{v})$. In addition, we have

1. $\vec{u} \cdot \vec{v}=0 \rightarrow \theta=90^{\circ}$
2. $\vec{u} \cdot \vec{v}>0 \rightarrow \theta<90^{\circ}$
3. $\vec{u} \cdot \vec{v}<0 \rightarrow \theta>90^{\circ}$

3D Cross Product

The cross product between two vectors is defined only for 3D vectors. We compute the cross product in the following way

$$
\vec{u} \times \vec{v}=\left(\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|,\left|\begin{array}{ll}
u_{3} & u_{1} \\
v_{3} & v_{1}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right)
$$

where

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

The cross product has the following properties:

1. Nilpotent: $\vec{v} \times \vec{v}=\overrightarrow{0}=(0,0,0)$
2. Scalar associative: $(a \vec{u}) \times(b \vec{v})=(a b)(\vec{u} \times \vec{v})$
3. Anti-symmetric: $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$
4. Addition distributive: $\vec{u} \times(\vec{v}+\vec{w})=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w})$
5. Dot-cross associative: $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}$
6. $\|\vec{u} \times \vec{v}\|^{2}=\|\vec{u}\|^{2}\|\vec{v}\|^{2} \sin ^{2} \theta$ where θ is the angle between vectors

The geometric interpretation of the cross product is very useful for a number of processes in computer graphics. Suppose \vec{u} and \vec{v} are not parallel vectors. Then the vector $\vec{w}=\vec{u} \times \vec{v}$ is perpendicular to both \vec{u} and \vec{v}. In particular, if both \vec{u} and \vec{v} are orthogonal (perpendicular) and of unit length then, with $\vec{w}=\vec{u} \times \vec{v}$, we have that the vectors $\{\vec{u}, \vec{v}, \vec{w}\}$ form an orthonormal basis for 3D space. Additionally, for any non parallel vectors \vec{u} and \vec{v}, the magnitude of vector $\vec{w}=\vec{u} \times \vec{v}$ represents the area of the parallelogram subtended by vectors \vec{u} and \vec{v}.

