Table of Contents

Selected Problem Set 8

1. Given the ray $\vec{r}(t) = \vec{e} + \vec{d}t$ where $\vec{e} = (3,3,3)^T$ and $\vec{d} = (-1,-1,-1)^T$, find the minimal value of t for which the ray intersects a generic sphere.

Pose $a = \|\vec{d}\|^2$, $b = \vec{e} \cdot \vec{d}$, $c = \|\vec{e}\|^2 - 1$ and proceed to solve for variable t as $at^2 + 2bt + c = 0$ as $t_0 = \frac{-b}{a} \pm \frac{\sqrt{b^2 - ac}}{a} = 3 \pm \frac{\sqrt{3}}{3}$. The minimal value is $3 - \frac{\sqrt{3}}{3}$.

- 2. Give the 3D coordinates of the intersection point on the sphere.
 - Put the smallest value of t in the equation of the ray to obtain $(3,3,3) + \left(3 \frac{\sqrt{3}}{3}\right)(-1,-1,-1) = \frac{\sqrt{3}}{3}(1,1,1)$
- 3. Give the sphere surface normal at the intersection point. For the sphere, the normal vector at the hit point is the hit point interpreted as a vector: $\vec{n} = \frac{\sqrt{3}}{3}(1,1,1)$.
- 4. Given a light located at $(0,0,10)^T$, give the unit vector from the intersection point to the light source.

The vector from the intersection point to the light source position is: $\vec{s} = L - \vec{r}(t_0) = \left(\frac{-\sqrt{3}}{3} - \frac{\sqrt{3}}{3}, 10 - \frac{\sqrt{3}}{3}\right)$

5. Compute \vec{r} , the vector of specular reflection at the intersection point.

$$\vec{r} = \vec{r}(t_0) - 2(\vec{r}(t_0) \cdot \vec{n})\vec{n} = \frac{-\sqrt{3}}{3}(1,1,1)$$