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Digital Images

An image is a matrix I (x , y) with a predefined number of rows and columns.
Images that have only 8 bits per pixel are monochromatic b/w images with 256
tones.

Spatial Sampling

If  the  distance d represents  the  distance  between  CCD elements,  then  the
highest frequency that the camera can capture is:

If a function contains no frequencies higher than f , it is completely determined
by the samples resulting from a sampling rate higher than 2 f . When this is not
the case, the high frequencies will alias with lower ones (see picture).

The highest spatial frequency of an image (ignoring the CCD camera) is given

by vc ' = a
λ f

,  where a is  the  diameter  of  the  aperture, λ is  the  light

wavelength, and f is the focal length. Spatial frequencies larger than vc may
well generate aliasing, as is demonstrated by the following pictures of a brick
wall taken with different resolutions. The left picture is said to be aliased.  In
general,  the  situation  is  described  by

vc<vc ' ,  where the difference is usually
at  least  an  order  of  magnitude.  As  a
result,  we  expect  aliasing  in  imagery  in
general.

Acquisition Noise 

Two images taken by the same camera
and of the same scene under the same
conditions are never  exactly  identical.  We have come accustomed to regard

vc = 1
2 d
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these noisy variations as probabilistic noise, which we may model with random
variables. Estimating the amount of noise in a sequence of n images of the
same  scene  is  usually  accomplished  with  computing  pixel-wise  averages
through the frames of the sequence:

followed by determining the standard deviation at each pixel:

This way, we can obtain an estimate of the acquisition noise that a particular
visual  sensor  generates.  However,  in  the  general  case,  pixel  values  are
correlated (CCD temperature, light-wave diffusion, etc). To obtain estimates of
this correlation, an auto covariance measure may be used.

Camera Parameters

Two groups of parameters describe cameras. They are intrinsic and extrinsic
parameters. Intrinsic parameters are those which link pixel coordinates of an
image point with the corresponding coordinates in the reference frame. Extrinsic
parameters define the location and orientation of the camera reference frame
with respect to a world reference frame. Camera calibration involves finding both
the extrinsic and intrinsic parameters of cameras. 

A frequent  task  when  using  computer  vision  equipment  is  to  determine  the
location  and  orientation  of  the  camera  frame  with  respect  to  some  known
reference, with image-related information only. The typical choice for describing
the transformation between the camera and the world frames of reference is to
model a 3D translation and a 3D rotation as T⃗ T=(T x ,T y ,T z) and

a rotation matrix (note that this matrix is orthogonal: RT R=R RT= I ). The relation
between a world point Pw and its transform into the reference of the camera

Pc is given by:

Intrinsic parameters characterize the optical, geometric, and digital properties of

σ (x , y )=( 1
n
∑
k=0

n−1

( Ī (x , y)−I k (x , y))2)
1
2

R=(r11 r12 r13

r21 r22 r23

r31 r32 r33
)

Pc=R(P−T⃗ )

Ī ( x , y )=1
n ∑

k=0

n−1

I k ( x , y )
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a visual sensor. They are the focal length, optical distortions, and the transform
between camera  frame of  reference  and pixel  coordinates  onto  the imaging
plane. 
In order to find the transformation from camera to pixel coordinates we need to
establish the relation between pixel coordinates ( xi m , y i m)

T and the coordinates
(x , y)T of the same point in the reference frame of the camera:

where (ox , o y)
T are the pixel coordinates of the optical center, and (sx , s y)

T are
the effective size of the pixels (CCD elements). 

Usually,  the  optics  introduces  distortions  that  are  most  visible  toward  the
periphery of the image. These are radial distortions, and they can be modeled
with the following relation:

where (xd , yd )
T are the coordinates of the distorted points, and r 2=x d

2+ y d
2 . 

Grouping  the  sum  of  these  elements  together  and  using  the  perspective
projection equations

we obtain an expression to transform 3D points in the world coordinates into
their pixel coordinates onto the imaging surface of the camera. Introducing the
transformation from world to camera coordinates and the transformation from
camera coordinates to pixel coordinates into the perspective equations yields:

where Ri is the i th row of the rotation matrix R . If we omit the radial distortion
parameters,  we can rewrite the complete transformation as a product of two
matrices:

( x
y)=(−(x i m−ox )s x

−( yi m−o y) s y
)

(x
y)=(x d (1+k 1 r2+k 2 r 4)

yd (1+k 1 r2+k 2 r4))

( x
y)=(−(x i m−ox )s x

−( yi m−o y) s y
)=( f

R1
T ( P⃗w−T⃗ )

R3
T ( P⃗w−T⃗ )

f
R2

T ( P⃗w−T⃗ )

R3
T ( P⃗w−T⃗ )

)

x = f
X
Z

y = f
Y
Z
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and

The matrix M e performs the transform between the world coordinates and the
camera reference frame while the matrix M l performs the transform between
the camera frame and the image frame. The complete transformation is written
as x=M l M e Pw . 

Image Noise

Image noise is defined as spurious and somewhat random fluctuations of pixel
values. A common assumption is that noise is additive and random:

Î (x , y)= I ( x , y)+n( x , y)

Different types of noise are countered by different techniques.  However it  is
important to note that what is considered noise for one computer vision task
might constitute useful information for another. 

The amount of noise in imagery is often quantified by a signal-to-noise ratio,
such as:

SNR=
σ s

σn

Alternatively, the signal-to-noise ratio may be expressed in decibels:

10 log10( σs
σ n )

In general, an additive model for noise is adequate for most computer vision
systems. 

M l=(
− f
s x

0 ox

0 − f
s y

o y

0 0 1
)

M e=( r11 r12 r13−R1
T T⃗

r21 r22 r23−R2
T T⃗

r31 r32 r33−R3
T T⃗ )



CS-9645 Introduction to Computer Vision Techniques Winter 2020

Gaussian Noise

The Gaussian model for noise is the most widely used in the absence of noise
information.  In  this  case,  we  assume  that n( x , y) is  a
white, zero-mean Gaussian stochastic process. That is to
say:  for  each  pixel I (x , y) there  is  a  random  variable

n( x , y) whose behavior is Gaussian.

Impulsive Noise

Impulsive  noise,  as  opposed  to  Gaussian  noise,  alters
pixels randomly, in such a way as to make their values very
different  from  what  they  should  be.  A form of  impulsive
noise is salt-and-pepper noise:

where x and y are  random  variables  in  the  interval [0,1] ,  while l is  a
parameter  controlling  the  noise  density  over  the  image,  and imax and imin

control the severity of the noise. 

Noise Filtering

Given a noisy image, noise filtering attempts to attenuate the noise as much as
possible without significantly altering the signal itself. A common technique to
noise  reduction  is  linear  filtering.  Suppose  an  image I (x , y) ,  and  a  kernel
containing a linear filter A(h , k) . The filtered version of the image is obtained by
the following discrete convolution:

where the kernel A(h , k) is of (odd) size m×m . A linear filter replaces the pixel
values I (x , y) with a weighted sum of the pixel values from a neighborhood of
size m×m centered  at ( x , y) .  The  weights  are  the  entries  in  the  kernel

A(h , k) .

The  convolution  of  two  signals  (for  instance,  an  image  and  a  kernel)  is
equivalent  to  the  multiplication  of  their  respective  Fourier  transforms:

I∗A=F−1 [ F [ I ]×F [ A] ] ,  where F and F−1 are  the  Fourier  transform  and  its
inverse, respectively. 

I A(x , y )=I∗A= ∑
h=−m

2

m
2

∑
k =−m

2

m
2

A (h , k ) I (x−h , y−k )

Î (h , k)={ I (h , k )  if x<l
imin+ y (imax−imin)  if x≥l
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There are various kernels that can be applied to images to perform different
types of image filtering. For instance, an averaging 3 by 3 kernel can be used to
attenuate noise. This kernel is:

This  kernel  attenuates  noise  because,  in  general,  noise  is  a  high-frequency
component  and  hence,  averaging  will  attenuate  sharp  local  variations.  To
understand this, consider the Fourier transform of a 1D box function (which is a
1D profile of the averaging kernel):

The  result  of  this  Fourier
transform is  the  sinc  function,  as
depicted  on  the  right.  Some
problems  are  associated  with
attenuating  the  high  frequency
contents of images. For example,
high  frequencies  are  not  always
caused by noise. In the particular
case  of  an  averaging  filter,  the
secondary  lobes  of  its  Fourier
transform  lets  in  some  high
frequency  content,  which may be
undesirable. 

The most  commonly  used approach to noise reduction is  Gaussian filtering,
which is implemented with a sampled Gaussian function as kernel entries. One
of the main reasons this is a common approach is that the Fourier transform of a
Gaussian is also a Gaussian, and hence there are no secondary lobes in the
spectrum,  as  opposed  to  the  averaging  kernel.  In  addition,  2D  Gaussian
functions are separable, which allows performing 2D image convolutions very
efficiently. The Gaussian filtered version of an image is obtained by the following
discrete convolution:

and can be separated along the two dimensions as follows:

A=1
9 [1 1 1

1 1 1
1 1 1]

F [box ( x)]=
2 sin (ω)

ω

I G(x , y )=I∗G= ∑
h=−m

2

m
2

∑
k=−m

2

m
2

G(h ,k ) I ( x−h , y−k )
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The  programming  technique  to  perform  this  2D  convolution  efficiently  is  to
proceed with the following steps:

1. Convolve in 1D all rows of the original image, and store the result in a
temporary image

2. Convolve in  1D all  columns in temporary image,  and store result  as a
Gaussian filtered image.

Note that you may start  this process with columns and then rows, as this is
interchangeable. 
To create a 1D Gaussian kernel, we must sample a Gaussian function which
has  the  appropriate  variance  for  the  filtering  task  at  hand.  The  relationship
between the variance of the continuous Gaussian and the kernel size is given by

m=5σ , which subtends 98.76% of the area under the Gaussian curve. Note
that m must be odd. Add 1 if necessary. 

To  speed up  computations  further,  we may  construct  Gaussian  kernels  that
contain  integer  values  instead  of  floating  points.  Since  the  pixels  are  also
represented  by  integer  values,  this  amounts  to  performing  discrete  1D
convolutions in integer arithmetic. The following steps are taken to construct an
integer Gaussian kernel:

1. Create a floating point Gaussian kernel

2. Find its smallest value

∑
h=−m

2

m
2

exp (−h2

2σ2 ) ∑
k=−m

2

m
2

exp(−k2

2σ2) I (x−h , y−k)
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3. Find the coefficient which scales this value to 1

4. Apply this coefficient to all the values in the kernel
 

5. Store the resulting kernel entries as integers

6. Compute the sum of these integer kernel values
 

7. Use this sum as a divisor in front of the kernel

Alternatively, Gaussian filtering can be achieved with repeated average filtering.
For  instance,  convolving  a 3×3 averaging  kernel n times  approximates  a
Gaussian convolution with a Gaussian kernel built with:

and size 2 n+3 .

Non-linear  filtering  can  also  be  performed  on  images.  This  type  of  filtering
cannot be applied to images through the means of convolutions. As an example
of such filtering, consider a median filter which replaces each pixel value by a
median  value  obtained  from a  local  neighborhood.  Clearly,  such  techniques
cannot be implemented using convolutions.

σ=√ n
3
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