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Homographies

In  epipolar  geometry  the  coplanar  constraint ( P⃗l−T⃗ )T T⃗ × P⃗l=0 is  employed  to
derive  the  essential  matrix  which  is  part  of  the  epipolar  constraint  equation

P⃗r
T E P⃗ l=0 where

is the matrix of the extrinsic parameters of stereoscopic systems. In cases when
translation is null ( T⃗ = 0⃗ ) then the essential matrix is undefined. Instead, the
equation specializes to

where p⃗l=( xl , yl , 1)T and p⃗r=(xr , yr ,1)T .  This  is  a  linear  relation  between p⃗r

and p⃗ l which holds up to a scale factor s . The matrix H is a homography
and represents a 2D projective transformation. 

The first  question  to  consider  is  how many correspondences are  needed to
solve for the projective transformation H . This matrix has nine elements but is
defined  only  up  to  scale,  yielding  8  degrees  of  freedom.  Since  each
correspondence provides two constraints, 4 correspondences are necessary to
estimate H .  The minimal data set for a solution can be used in a RanSaC
framework in order to provide an estimate that is robust to noise. 

The Direct Linear Transformation Algorithm

Given a set of i=1,… , 4 image correspondences, the transformation matrix is
given by the equation s p⃗ri=H p⃗ li . This equation involves homogeneous vectors
and thus p⃗ri and H p⃗ li are not strictly equal. They have the same direction but
may differ in magnitude. If we use a geometric constraint such as p⃗ri×H p⃗ li=0

E=RS=[r11 r12 r13

r21 r22 r23

r31 r32 r33
][ 0 −T z T y

T z 0 −T x

−T y T x 0 ]

H p⃗l=s p⃗r



CS-9645 Introduction to Computer Vision Techniques Winter 2020

instead, we obtain a simpler solution for H . If the j th row of H is denoted by
h⃗ j

T , then

 

If we write p⃗ri=(xri , yri ,ωri)
T  the cross product can then be written as

Using h⃗ j
T p⃗li = p⃗li

T h⃗ j , we can write a set of three equations such as

 

These equations have the form Ai h⃗=0⃗ , where Ai is a 3 by 9 matrix and h⃗ is a
vector containing the 9 elements of H in the following way:

The equation Ai h⃗=0⃗ is linear in h⃗ and quadratic in the known coordinates of
the correspondence points. 

Only 2 of the 3 equations in Ai h⃗=0⃗ are linearly independent and hence each
correspondence gives two equations in the entries of H . It is thus usual to omit
the third equation (it is a linear combination of the first two) and write:

where Ai is now a 2 by 9 matrix. A number of observations are worth a note:

H p⃗ li=[h⃗1
T p⃗ li

h⃗2
T p⃗ li

h⃗3
T p⃗ li

]
p⃗ri×H p⃗ li=[ y ri h⃗3

T p⃗ li−ωri h⃗2
T p⃗ li

ωri h⃗1
T p⃗ li−xri h⃗3

T p⃗ li

xri h⃗2
T p⃗ li− yri h⃗1

T p⃗li
]

[ 0⃗T −ω ri p⃗ li
T yri p⃗ li

T

ωri p⃗ li
T 0⃗T −x ri p⃗ li

T

−y ri p⃗ li
T xri p⃗ li

T 0⃗T ][ h⃗1

h⃗2

h⃗3
] = 0⃗

H =[ h⃗1
T

h⃗2
T

h⃗3
T ]

Ai h⃗ = [ 0⃗T −ωri p⃗li
T y ri p⃗li

T

ωri p⃗li
T 0⃗T −xri p⃗li

T ][ h⃗1

h⃗2

h⃗3
] = 0⃗
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• These  equations  hold  for  any  homogeneous  coordinate  representation
( xri , y ri ,ωri)

T of p⃗ri .  If ωri=1 then ( xri , y ri) are  measured  in  image
coordinates. 

• Since H is  generally  determined  up  to  scale, h⃗ actually  gives  the
required matrix H . A scale may be arbitrarily chosen, such as ∥h⃗∥=1 ,
for instance.

Estimation of Homographies with RanSaC 

Because of inherent noise, it is imperative to solve for H in a robust way. To 
this end, we can use RanSaC in this manner:

• For as long as necessary do

◦ Select 4 correspondences at random

◦ Compute H directly 

◦ Find inliers as ∥ p⃗ri , H p⃗ li∥<ϵ

• Identify H that leads to the largest set of inliers

• Recompute H with the largest set of inliers using Least-Squares

If we know the proportion of inliers π from the set of all correspondences, and
given that a minimum of n=4 correspondences are needed for a solution, then
the probability that we randomly choose n=4 inlier correspondences is given by

πn . Consequently, the probability that we have not picked a set of inliers after
N iterations is given by (1−πn)N .

Consider  a  proportion  of  inliers π=0.3 (so  mostly  noise).  The  probability  of
randomly picking inliers during one RanSaC iteration is thus 0.34=0.0081 or a
0.8% chance. If we use 100 iterations, the probability that we did not pick inliers
once  is (1−0.34)100=0.44 or  44%.  However  if  we  use  1000  iterations,  the
probability of not having picked inliers once fall to one in 3400. 

Overdetermined Solution

If more than 4 correspondences are available, then the equations provided by
Ai h⃗=0⃗ are overdetermined. If all the correspondences are correct, then A will

have rank 8 and h⃗ will  be the correct  solution.  If,  on the other  hand,  some
correspondences are inaccurate (noise), then the only exact solution to Ai h⃗=0⃗

is h⃗=0⃗ . To avoid this trivial solution, an additional constrain may be imposed
such as ∥h⃗∥=1 . Instead of an exact solution we can require that h⃗ minimizes
the norm ∥A h⃗∥ subject to ∥h⃗∥=1 . The solution is then the unit eigenvector of
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AT A associated with the smallest eigenvalue. 

The  direct  linear  transformation  algorithm  implements  this  approximative
solution:

• Given n≥4 image  correspondences { p⃗ li , p⃗ri } ,  compute H such  that
p⃗ri×H p⃗ li=0

• For each correspondence { p⃗ li , p⃗ri } , compute the 2×9  matrix Ai

• Assemble the n 2 by 9 matrices Ai into a single 2n×9 matrix A

• Perform the SVD of A .  The unit  singular  vector  corresponding to the
smallest singular value is the solution h⃗ .
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Solutions from Other Entities

Homographies  can  be  computed  from  other  image  primitives  than  point
correspondences. For instance, line correspondences can be used for the same
purpose. With a line transformation l r=H T l l ,  a matrix A h⃗=0⃗ can be derived
with a minimal solution requiring 4 lines. Homographies can also be computed
from conic correspondences, and so on. 

Conditions for Homographies

Two images are related by a homography if and only if

• Both images are viewing the same plane from a different angle
• Both images are taken from the same camera but from a different angle
• Camera is rotated about its center of projection without any translation

Any homography relationship is independent of scene structure. In order to see
this,  consider  that  when  to  cameras  have  a  non-zero  baseline,  epipolar
geometry holds and thus there exists a transformation from a point in one image
to a line in the other, with the actual mapping depending on the depth of the
point in the scene. As the distance separating the two cameras goes to zero, so

Illustration 1: The resulting stitched image
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does the baseline. Triangulation (recovering depth from image disparity) is not
feasible in this case. As a consequence, the homography maps a point in one
image to another point in the other image in a way that is independent of depth
(or 3D structure).

Known Rotation and Intrinsics

If  the  matrix  of  intrinsics M is  known for  the  camera,  and  if  somehow the
rotation about its projection centre R can also be known, then obtaining the
homography H is straightforward and performed in the following way:

The matrix of the intrinsics is required here because we are working with pixel
coordinates. In general, when one uses a camera and rotates around to take
pictures, both the matrix of intrinsics and the rotation are unknown and require
estimation  through  the  identification  and  quantification  of  2D  image
correspondences  within  overlapping  image  regions.  When  a  photographer
rotates around a point to take panoramic pictures, it is normally a fact that the
optical center of the camera does not exactly coincide with the rotational point of
the  photographer.  However,  if  this  shift  in  rotational  centers  is  small  in
comparison to the distance of objects being imaged by the camera then the
resulting error is negligible.  

Panoramic Imaging

• Higher resolution photographs, stitched from partly overlapping images
• Capture scenes that cannot be captured in one frame
• Cheaply and easily achieve effects that used to cost a lot of money
• Use computational methods to go beyond the physical limitations of the 

camera

Panoramic imaging, when it can be performed with computational techniques
provides way to augment the capabilities of the physical sensors that are being
used. 

H =MRM −1

Illustration 2: Panoramic view created with automatic stitching from estimated
homographies
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Capturing panoramic images poses a number of challenges and one is
constrained in a number of ways:

• Tripod versus hand-held
• Consistent exposure between frames yields smooth transitions
• Manual exposure makes consistent exposure of dynamic scenes easier
• Scenes do not have constant intensity everywhere
• Caution with distortion caused by lens
• Polarizing filters can cause problems
• Sharpness in image overlap region
• Image sequence requires a reasonable overlap (at  least  15-30%) such

that good features can be matched

Image Blending in Overlapping Regions

Given a feature match between two images that partially overlap (as it should for
image stitching), the match in one image will be closer to its image borders than
its converse in the other image (note that it can be closer to one border and
further to an other border, with respect to its match). From this observation, a
simple weighing function can be devised to give more importance to the image
gain for the match that is further to its image boundaries. Other techniques for
blending have been devised, some of them very advanced, involving Laplacian
pyramids, wavelets, and so on.

When moving objects are present while taking a number of pictures to create a
panorama,  there is  the possibility  that  moving objects  will  be present  in  the
overlapping regions of images. The blending of these regions usually result in
what is called ghosting. That is to say, the moving object will present itself twice,
in different locations, in the fused part of the images. This is a problem that can
be alleviated by various means,  such as finding matches within  overlapping
regions of images that indicate motion and blending accordingly, such that only
one instance of the moving object appears. 
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