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Image Processing

Image processing operators take one (or more) input image and produce an
output image: g ( x⃗)=h( f ( x⃗)) , where g is the output image and f is the input
image.

Commonly Used Operators

• Gain  and  bias: g ( x⃗)=a f ( x⃗)+b ,  where a and b are  gain  and  bias
parameters, respectively (note that gain and bias need not be constants,
and thus g ( x⃗)=a ( x⃗) f ( x⃗)+b( x⃗) ).

• Linear blend: g ( x⃗)=(1−α) f 0( x⃗)+α f 1( x⃗) , where α∈[0,1] .

• Gamma  correction: g ( x⃗)=[ f ( x⃗)]
1
γ ,  is  a  non-linear  operator  useful  for

removing the non-linear mapping between input radiance and quantized
pixel values (radiance is the quantity of radiation that is emitted from a
surface and reaches the sensor). Usually, γ≈2.2 is an adequate value. 

• Histogram  equalization:  In  this  technique,  we  plot  the  histogram  of
individual  color  channels  and  luminance  values,  from  which  relevant
statistics  can  be  computed  and  used  to  enhance  images,  by  way  of
histogram equalization. First we need to find an intensity mapping function

f (I ) such that the resulting histogram is flat. To do this, we integrate the
distribution h( I ) to obtain the cumulative distribution c( I ) :

c ( I)= 1
N
∑
i=0

I

h(i)



CS-9645 Introduction to Computer Vision Techniques Winter 2020

where N is  the  number  of  pixels  in  the  image.  Then,  for  any  given
intensity, we can look up its corresponding percentile c( I ) and determine
the final value that pixels should have (apply f (I )=c (I ) with c∈[0,255] ).
This  technique  can  be  used  locally  in  the  image  but  care  must  be
exercised in order not to introduce brightness discontinuities).

Linear Filtering

Linear  filtering  operators  involve  weighted  combinations  of  pixels  in  small
neighborhoods. A linear filter is defined as:

where the entries in the kernel h(k , l) are often called filter  coefficients.  The
above formulation is known as a correlation operator. A common variant of this
formula is:

and  is  known  as  the  convolution  operator,  where h  is  called  the  impulse
response function.  When the kernel  function is  convolved with a Dirac delta
function, the kernel simply reproduces itself: h∗δ=h .

Both correlation and convolution operators are known as Linear Shift Invariant
(LSI) operators. Linearity means that the relationship between the input and the
output of the system is a linear function. That is to say, if input f 1( x) produces
response g1( x) and  input f 2(x) produces  response g 2(x) ,  then  the  scaled
and summed input a1 f 1( x)+a2 f 2(x)=a1 g 1(x)+a2 g 2( x) , where a1 and a2 are real
constants.  This  can  be  extended  to  any  number  of  terms  such  that  for

a1, a2,… , an the input

produces the output

In particular, we have that input function

   

g(i , j)=∑
k ,l

f ( i+k , j+l )h(k , l)

g(i , j)=∑
k ,l

f ( i−k , j−l)h(k , l)=∑
k ,l

f (k , l)h(i−k , j−l)

∑
i=1

n

a i f i(x)

∑
i=1

n

a i gi(x )

∫
−∞

∞

aw f w(x)dx
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produces output

Separable Filtering

If  a  kernel  function h( x , y) can  be  expressed  as h1(x)h2( y) ,  then  an  input
image can be convolved with the kernel in an efficient manner. For instance, if a
mask  for  the  kernel  is  chosen  to  have  size m×m and  the  kernel  is  not
separable,  then  the  time  complexity  for  an  image  convolution  is  given  by

O (n1n 2 m2) where n1×n2 is the size of the input image. Conversely, if the kernel
is separable, then the time complexity of the convolution becomes O (n1n 2 m) , a
profound difference. 

Here are some examples of simple, separable, linear filters:

• The averaging (or box) filter:
 

expressed in separable form as:

 

• The tent filter:

expressed in separable form as:

• Convolution  of  the  tent  filter  with  itself  yields  the  cubic  approximating
spline which is called the Gaussian kernel. 

∫
−∞

∞

aw gw(x )dx

1
9 [1 1 1

1 1 1
1 1 1]

1
3

[1 1 1 ]

1
16 [1 2 1

2 4 2
1 2 1]

1
4
[1 2 1 ]
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• Approximate  Gaussian  kernels  can  be  obtained  by  successive
convolutions of the box filter.

• These  filters  are  called  low-pass  filters  because  they  attenuate  high
frequencies and let lower ones pass through.

Smoothing kernels may also be used to sharpen images. For example, since
blurring  the image  reduces  its  high-frequency  contents,  adding  some of  the
difference between the original and blurred image makes it sharper:

where h(k , l) is a low-pass (smoothing) kernel, f ( x⃗) is the input image, γ is a
real number within [0,1] , and g ( x⃗) is the output image.

Band-Pass and Steerable Filters

More sophisticated kernels are created by first smoothing images with a unit-
area kernel

and then taking its first or second order derivatives. Such filters are known as
band-pass filters  since they filter  out  some low and high-frequency contents
while letting a particular band pass. 

The  undirected  second-order  derivative  of  a  2D image  is  obtained  with  the
Laplacian operator:

Blurring an image with a Gaussian and then taking its Laplacian is equivalent to
convolving it directly with a Laplacian of a Gaussian (LoG) filter:

 

Likewise, an oriented filter may be derived by first smoothing an image with a
Gaussian and then taking a directional derivative

g ( x⃗)= f ( x⃗)+γ( f ( x⃗)−h(k , l)∗ f ( x⃗))

G ( x⃗ ;σ)= 1
2πσ2

exp {−( x2+ y2)
2σ 2 }

∇ 2 f =∂
2 f

∂ x2 +
∂2 f

∂ y2

∇ 2 G ( x⃗ ;σ)=( x2+y 2

σ4 − 2

σ2 )G ( x⃗ ;σ)
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which is obtained by taking the dot product between the gradient field ∇ and a
unit direction û=(cosθ ,sin θ) :

Consequently, the smoothed directional derivative filter is:

where û=(u , v)=(cosθ ,sin θ) .

Integral Images

If an image is going to be repeatedly convolved with different averaging filters,
we can pre-compute the summed area table, which is simply the running sum of
all the pixel values from the origin of the image:

This running sum can be efficiently implemented with a recursive raster-scan
algorithm:

To find the sum area (integral) inside a rectangular sub-image [i0, i1]×[ j0, j1] , we
simply combine four samples from the summed-area table in the following way:

Non-Linear Filtering

Sometimes, linear filters do not yield adequate results and one must resort to
the use of non-linear filters. A prime example of this is the elimination of shot
noise (also known as salt and pepper noise) with a median filter. A median filter
selects the median value from each pixel's neighborhood. Since the shot noise
values  usually  lie  well  outside  the  correct  values  in  the  neighborhood,  the
median filter is able to eliminate this type of noise. 

∇ û= ∂
∂ û

û⋅∇(G∗ f )=∇ û(G∗ f )=(∇ û G )∗ f

G û=u Gx+v G y=u ∂G
∂ x

+v ∂G
∂ y

s (i , j)=∑
k=0

i

∑
l=0

j

f (k , l)

s(i , j)=s(i−1, j)+s(i , j−1)−s(i−1, j−1)+ f (i , j)

s (i0,… ,i1, j0,…, j1)=∑
i=i0

i1

∑
j= j0

j1

s (i1, j1)−s (i1, j0−1)−s(i0−1, j1)+s( i0−1, j0−1)
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There  is  also  the α -trimmed  mean  filter  which  computes  the  mean  of
subtending pixels, while excluding the α smallest and largest values.

Another option is to compute a weighted median in which each pixel is used a
number of times depending on its distance from the center. This is equivalent to
minimizing the weighted objective function:

where g(i , j) is  the  desired  output  value  and p=1 for  the  weighted median.
When p=2 ,  then  the  function  computes  the  weighted  mean,  which  is
equivalent to correlation after normalizing by the sum of the weights. 

Alternatively,  we  can  combine  weighted  filter  kernels  with  efficient  outlier
rejection mechanisms. In the bilateral filter the output pixel value depends on a
weighted combination of neighboring pixel values:

 

The weighted coefficients w (i , j , k , l) depend on the product of a domain kernel

 

and a data-dependent range kernel

When  multiplied  together,  they  yield  the  data-dependent  bilateral  weight
function:

Fourier Transforms

Fourier transforms provide a means to analyze what a given filter does to the
frequency content of images. As a starting point, we can imagine that we pass a
sinusoid of known frequency through the filter and determine how much it is
attenuated. Consider

∑
k ,l

w(k , l)∣f (i+k , j+l )−g(i , j)∣p

g(i , j)=
∑
k , l

f (k ,l)w(i , j , k ,l)

∑
k ,l

w (i , j , k , l)

d (i , j , k , l )=exp {−(i−k )2+( j−l )2

2σd
2 }

r(i , j , k , l )=exp {−∥ f (i , j )− f (k , l )∥2

2σr
2 }

w (i , j , k , l)=d (i , j , k , l)r (i , j , k ,l)
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where ω=2π f is  the  angular  frequency, f is  the  frequency,  and ϕi is  the
phase. If we convolve the sinusoidal signal s (x ) with a filter that has impulse
response h(x ) then we get a sinusoid of identical frequency but with a different
amplitude and phase:

The magnitude A is called the gain of the filter and ϕo−ϕi is its phase shift. If
we use a complex-valued sinusoid such as:

Then, the previous convolution becomes:

In that sense, the Fourier Transform is simply a tabulation of the magnitude and
phase response at each frequency:

We denote a Fourier Transform pair as:

In the continuous domain, the Fourier Transform is written as:

and, in the discrete domain, as:

where N is the number of samples in the signal. 

Properties of Fourier Transforms

• Superposition: The Fourier Transform of a sum of signals is the sum of
their Fourier Transforms

s (x )=sin(ωx+ϕi)

o (x)=h(x)∗s (x)=A sin(ω x+ϕo)

s (x )=e iω x=cos (ω x)+i sin(ω x )

o (x)=h(x)∗s (x)=A eiω x+ϕ

H (ω)=F [h(x )]=Ae i ϕ

h(x )⇔H (ω)

H (ω)=∫
−∞

∞

h(x )e−iω x dx

H (k )= 1
N
∑
x=0

N−1

h (x)e
−i 2π k x

N
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• Shift:  The Fourier  Transform of a shifted signal  is the transform of the
original signal multiplied by a linear phase shift (complex sinusoid)

• Reversal:  The  Fourier  Transform  of  a  reversed  signal  is  the  complex
conjugate of the transform of the signal

• Convolution: The Fourier Transform of a pair of convolved signals is the
product of their transforms

• Correlation: The Fourier Transform of a correlation is the product of the
first transform with the complex conjugate of the second one

• Multiplication: The Fourier Transform of the product of two signals is the
convolution of their transforms

 

• Differentiation: The Fourier Transform of the derivative of a signal is the
transform of the signal multiplied by the frequency

 

• Domain  scaling:  The  Fourier  Transform  of  a  stretched  signal  is  the
equivalently compressed and scaled version of the original transform

• Real Images: The Fourier Transform of a real-valued signal is symmetric
around the origin

• Parseval's Theorem: The energy (sum of squared values) of a signal is
the same as the energy of its Fourier transform 

Property Signal Transform

Superposition f 1(x )+f 2(x) F1(ω)+F2(ω)

Shift f (x−x0) F(ω)e−iω x0

Reversal f (−x ) F ∗ (ω)
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Convolution f (x)∗h(x) F(ω)H (ω)

Correlation f (x)corr h(x ) F (ω)H ∗(ω)

Multiplication f (x)h(x ) F(ω)∗H (ω)

Differentiation f ' (x) iω F (ω)

Domain Scaling f (a x) 1
a

F (ωa )
Real-valued Signal f (x)= f ∗ (x ) F (ω)=F (−ω)

Parseval's Theorem ∑
x

f (x)2 ∑
ω

F (ω)2

Fourier Transform Pairs

Signal Transform

Impulse: δ(x ) 1

Shifted Impulse: δ(x−x0) e−iω x0

Box: box( x
a ) a sinc(aω)

Tent: tent ( x
a ) a sinc2(aω)

Gaussian: G(x ;σ) √2π
σ G(ω ;σ−1)

LoG: ( x2

σ 4−
1
σ2 )G( x ;σ)

−√2π
σ ω2G(ω ;σ−1)

Gabor: cos(ω0 x)G (x ;σ) √2π
σ G(ω±ω0 ;σ−1)

Unsharp Mask: (1−γ)δ(x )−γG(x ;σ)
(1−γ)−√2π

σ G(ω ;σ−1)

• box(x )={1 if ∣x∣≤1
0 otherwise

• sinc(ω)=sin
(ω)
ω

• tent (x )=max (0,1−∣x∣)

• G(x ;σ)= 1
√2πσ

exp(−x2

2
σ2)
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2D Fourier Transforms

The extension from 1D Fourier Transforms to 2D Fourier Transforms is trivial 
and  the continuous 2D transform is written as:

 

The discrete Fourier transforms easily follows:

where M and N are the width and height of the signal.

Discrete Cosine Transform

The Discrete Cosine Transform is a variant of the Fourier Transform often used
to  compress  images  in  block-wise  fashion.  The  1D  Cosine  Transform  is
computed by taking the dot product of each N-wide block of pixels with a set of
cosines of different frequencies:

where k is the frequency index, and the one-half pixel offset is used to make
the  basis  coefficients  symmetric.  The  2D  version  of  the  Discrete  Cosine
Transform is defined as:

Just  as  with  the  Fast  Fourier  Transform  (FFT),  the  2D  Discrete  Cosine
Transform is separable. 

Wiener Filtering

Signal spectra capture a first-order description of spatial statistics. In particular,
we can assume that an image is a sample from a correlated Gaussian random
noise field combined with a statistical model of the measurement process. 

To derive the Wiener  filter,  we analyze each frequency component  from the
Fourier Transform of a signal independently. The image formation process may

H (ωx ,ωy )=∬ h( x , y)e−i (ωx x+ωy y)dx dy

H (k x , k y)=
1

M N
∑
x=0

M−1

∑
y=0

N−1

h(x , y )exp(−i2π
k x x+k y y

M N )

F(k )=∑
i=0

N−1

cos( πN (i+1
2 )k ) f (i)

F(k , l)=∑
i=0

N−1

∑
j=0

N−1

cos( πN ( i+1
2 )k)cos( πN ( j+

1
2 ) l) f (i , j)
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be written as:

where s( x , y) is the noiseless image (that we are trying to recover), n( x , y) is
the  additive  noise  signal,  and o(x , y) is  the  observed  noisy  image.  In  the
frequency domain, this can be written as:

At  each  frequency (ωx ,ω y) ,  we  know  from  the  image  spectrum  that  the
unknown transform component S (ωx ,ω y) has a prior  distribution,  or  a way of
describing the uncertainty before considering the image data itself. 

To find this prior distribution, we assume that an image is a random noise field
whose expected (mean)  magnitude at  each frequency is  given by its  power
spectrum:

Then we can say that the unknown transform component S (ωx ,ω y) has a prior
distribution which is a zero-mean Gaussian with variance P s(ωx ,ω y) . There is
also the noisy measurement O (ωx ,ωy) whose variance is P n(ωx ,ω y) (the power
spectrum of the noise) which is assumed to be constant:  P n(ωx ,ω y)=σ n

2 . With
Baye's rule, then we can write the posterior estimate of S as:

where the denominator is used simply to make the distribution integrate to 1, as
it should. 

The prior distribution p (S) is given by:

where μ is the expected mean at that frequency. The measurement distribution
p (O∣S ) is given by:

o(x , y)= s(x , y)+n( x , y)

O (ωx ,ω y)=S (ωx ,ω y)+N (ωx ,ω y)

〈S (ωx ,ωy )
2〉=P s(ωx ,ωy)

p (S∣O )= p(O∣S ) p(S )

∫S
p(O∣S ) p(S )

p (S)=exp(−(S−μ)
2

2 P s
)

p (O∣S )=exp(−(S−O)2

2 Pn
)
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Taking the negative logarithm on both sides of the posterior estimate of S and
setting μ=0 for simplicity, we obtain:

which is the negative posterior log likelihood. The minimum of this quantity is
obtained as:

and

is the Fourier Transform of the optimal Wiener filter to remove the noise from an
image that has power spectrum P s(ωx ,ω y) .  This method of deriving the filter
can be extended to the case where the observed image is  a noisy,  blurred
version of the ideal noiseless image:

where b(x , y) is a known blurring kernel. 

−log p(S∣O ) = −log p(O∣S )−log p(S )+C

= 1
2

P n
−1(S−O)2+ 1

2
P s
−1 S2+C

S ∗=( 1

1+
Pn

P s
)O

W (ωx ,ωy)=
1

1+
σn

2

P s(ωx ,ωy)

o(x , y)=b( x , y)∗s(x , y)+n( x , y)


	Image Processing
	Commonly Used Operators
	Linear Filtering
	Separable Filtering
	Band-Pass and Steerable Filters
	Integral Images
	Non-Linear Filtering
	Fourier Transforms
	Properties of Fourier Transforms
	Fourier Transform Pairs
	2D Fourier Transforms

	Discrete Cosine Transform
	Wiener Filtering


