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Robust Methods

Signal  noise  poses  problems  in  a  variety  of  algorithms  and  techniques  in
computer vision. Images are notoriously noisy and some operations amplify this
problem. We examine a few of the better known robust computational models
which are often used in computer vision. 

The Random Sample and Consensus (RanSaC) Method

This iterative method is a form of parametric matching that can be applied to
data sets containing outliers. The algorithm is non-deterministic as its behavior
is not repeatable. 

A particularly difficult numerical problem is that of fitting lines through points in
the presence of outliers. A least-squares solution to this problem will generally
be poor. Assuming that the data set contains both inliers and outliers. RanSaC
can produce a model computed only from the inlier points, provided that the
probability of choosing only inliers in the selection of data is sufficiently high. In a
line fitting example we would start by generating lines from pairs of points. Since
only two points are needed to define a line, we set n=2 , the minimum number
of data elements required to obtain a sample model. Suppose ω is the ratio of
inliers to points in the data set, and k is the chosen number of iterations. Then,
the probability of one sample being correct is given by:

Given a sample model for a line, we now must determine how good this sample
is, by counting the number of points that are on the sample line, with tolerance

ϵ . Finally we choose the sample line that has the largest number of points
consonant with it. The RanSaC algorithm may be summarized as:

• Inputs:

◦ n the smallest number of points required to estimate parameters

◦ k the number of iterations required

1−(1−ωn)k
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◦ ϵ the threshold used to identify a point that fits well

◦ d the number of fitting points required to assert that a model fits well

• Until k iterations have occurred,

◦ Draw a sample of n points from the data, uniformly and at random

◦ Fit parameters to that set of n points

◦ For each data point outside this sample, test the distance from the point
to the line against ϵ ,  and count the point as an inlier if  distance is
smaller than ϵ

◦ If there are d or more points that are inliers, then this is a good fit and
refit the line this time using all the points in the data set

• Use the best fit from this collection, using the fitting error as a criterion

Parameters ϵ and d are determined from specific requirements related to the
application.  The  number  of  iterations k however  can  be  determined  from a
theoretical result. Let p be the probability that the algorithm in some iteration
selects only inliers from the data set when it chooses the n points to estimate
the  model  parameters.  Hence, p gives  the  probability  that  the  algorithm
produces a useful result. 

Assuming  that  the n points  needed  for  estimating  the  model  are  selected
independently, then ωn is the probability that the n points used to estimate the
model are inliers and (1−ωn) is the probability that at least one the n points is
an outlier implying that an incorrect model will be estimated from these points.
This probability  to  the power of k is  the probability  that  the algorithm never
selects a set of n points which are all inliers and it thus must be equal to 1− p .
Thus we can write:

Solving for k yields:

The standard deviation of the number of iterations is given by:

1− p = (1−ωn)k

k =
log(1− p)
log(1−ωn)

σ k = √1−ωn

ωn
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An advantage of  RanSaC is  its  ability  to  do robust  estimation  of  the model
parameters. However there is no upper bound on the time it takes to compute
these parameters. 

The Expectation Maximization (EM) Algorithm

EM is frequently  used for  data clustering in  machine learning and computer
vision. It is also employed in medical image reconstruction, especially in positron
emission tomography. 

Suppose we have multivariate observations that come from a set of probability
density functions in the form ( x⃗1,…, x⃗n) where x⃗ i is a vector of p dimensions.
Each x⃗ i is  to  be  viewed  as  arising  from  a  super-population G which  is  a
mixture  of g populations G1,…,Gg in  some  proportions π1, …,πg respectively,
where:

with each πi≥0 . The probability density function (p.d.f.) of an observation x⃗ in

∑
i=1

g

π i = 1

Illustration 1: RanSaC performance on noisy data
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G can therefore be represented in the finite mixture form:

where f i( x⃗ ; θ⃗) is the p.d.f. of Gi , and θ⃗ denotes the vector of all the unknown
parameters  associated  with  the  parametric  forms  of  the g component
probability density functions. 

In the particular case of multivariate normal component densities, θ⃗ consists of
the elements of the mean vectors u⃗i and the distinct elements of the covariance
matrices Σi for i=1,…, g . The vector ϕ⃗=(π⃗T , θ⃗T )T of all the unknown parameters
belongs to some parameter space Ω⃗ .

The likelihood equation for ϕ⃗ :

can be so manipulated that the likelihood estimate ϕ̂ satisfies:

and

These equations suggest an iterative computation for their solution and can be
solved by a direct application of an Expectation-Maximization algorithm.

Let the vector of indicator variables z⃗ j=(z1j ,… , z gj)
T be defined by:

where z⃗1,…, z⃗n are  independently  and  identically  distributed.  It  is  further
assumed  that x⃗1,…, x⃗n ,  given z⃗1,…, z⃗n are  conditionally  independent  and x⃗ j

given z⃗ j has log density:

Hence, the likelihood for the complete data X⃗ =( x⃗1
T ,… , x⃗n

T)T and Z⃗=( z⃗1
T ,… , z⃗n

T )T is
given by:

f ( x⃗ ; θ⃗ ) = ∑
i=1

g

πi f i( x⃗ ; θ⃗)

∂ L(ϕ⃗)
∂ ϕ⃗

= 0⃗

π̂i = ∑
j=1

n τ̂ ij

n

∑
i=1

g

∑
j=1

n

τ̂ ij

∂ log f i( x⃗ j ; θ̂i)
∂ θ̂

= 0⃗

z ij={1 if x⃗ j ∈ G i

0 if x⃗ j ∉ G i

∑
i=1

g

zij log f i( x⃗ j ;θ) j=1,…, n
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The EM algorithm is  applied to  the mixture  model  by treating Z⃗ as missing
data. 

Using  some  initial  value ϕ⃗(0 ) for ϕ⃗ ,  the  Expectation  step  requires  the
computation  of  the  expectation  of  the  complete  data  log  likelihood LC (ϕ⃗) ,
conditional on the observed data and the initial fit ϕ⃗(0 ) for ϕ⃗ :

This step is performed by replacing each indicator variable zij by its expectation
conditional on x⃗ j , given by:

That is, zij is replaced by the initial estimate of the posterior probability that x⃗ j

belongs to component distribution Gi . 

The  Maximization  step  is  to  choose  the  value  of ϕ⃗(1 ) that  maximizes  and
therefore leads to replacing τ̂ ij with τi( x⃗ j; ϕ⃗(0)) . The solution to the M step often
exists  in  closed  form,  as  is  the  case  with  mixtures  of  normal  component
distributions.  The  E  and  M  steps  are  alternated  repeatedly.  Since  the  log
likelihood satisfies L(ϕ⃗(k+1))≥L(ϕ⃗(k )) , then convergence is assured. 

Mixture of Normals

In the case when the component densities are normal:

with probability πi , the vector θ of parameters associated with the component
densities contains the elements of  the mean vectors u⃗1,… ,u⃗g and the distinct
elements  of  the  covariance  matrices Σ1,… , Σg .  It  follows  from  under  the
normality  assumption  that  the  likelihood  estimates  of  component  distribution
parameters satisfy:

LC(ϕ⃗)=∑
i=1

g

∑
j=1

n

z ij {log πi+log f i( x⃗ j ;θ)}

Q( ϕ⃗ , ϕ⃗(0)) = E { LC (ϕ⃗)∣X⃗ ; ϕ⃗(0 )}

E {zij∣x⃗ j ; ϕ⃗(0)} = τi( x⃗ j; ϕ⃗(0)) i=1,… , g

x⃗ j∼N (u⃗i ,Σi) ∈ Gi

π̂i = ∑
j=1

n τ̂ ij

n

ûi = ∑
j=1

n τ̂ ij x⃗ j

n π̂i

Σ̂i = ∑
j=1

n τ̂ij( x⃗ j−ûi)( x⃗ j −ûi)
T

n π̂i
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where the posterior probability that x⃗ j belongs to Gi is given by:

Normal Homoscedastic Components

In  the  case  when the  component  densities  have  equal  covariance  matrices
(homoscedasticity):

the maximum likelihood estimator of the matrix specializes to:

and

The problem of estimating how many component distributions are present in a
super-population  is  difficult  and  still  open.  Therefore,  the  applicability  of  the
algorithm is limited to cases when g is known a-priori. 

The Hough Transform

The principle behind the Hough transform is to map a problem into a simple
extremum in the parameter space of a feature (a line, a circle, etc). 

The Hough transform is best exemplified by specializing it to the detection of
lines in images. The stages of the transform may be summarized as follows:

• Any  line y=mx+n is  identified  by  a  unique  pair  of  parameters (m ,n) ,
which is a point in the parameter space.

• Any  point p⃗=( x , y)T in  the  image  corresponds  to  a  line n=x(−m)+ y in
parameter space. As the elements of (m , n) vary, we obtain the set of all
lines passing through p⃗ .

τ̂ij =
π i∣Σi∣

−1
2 exp{− 1

2
( x⃗ j−u⃗ i)

T Σi
−1( x⃗ j−u⃗i )}

∑
t

πt∣Σt∣
−1

2 exp{− 1
2

( x⃗ j−u⃗ t )
T Σt

−1( x⃗ j−u⃗ t)}

Σ̂ = ∑
i=1

g

∑
j=1

n τ̂ ij( x⃗ j−ûi)( x⃗ j− ûi)
T

n

x⃗ j∼N (u⃗i ,Σ)

τ̂ij =
π i∣Σ∣

−1
2 exp{− 1

2
( x⃗ j−u⃗ i)

T Σ−1( x⃗ j−u⃗ i)}
∑

t

πt∣Σ∣
−1

2 exp{− 1
2

( x⃗ j−u⃗ t )
T Σ−1( x⃗ j−u⃗ t )}
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• We  divide  the  parameter  space (m , n) into  a  grid  of  cells,  and  set  a
counter c(m ,n) to zero.

• Assume  the  image  contains  a  single  line (m ' ,n' ) formed  by  points
p⃗1,… , p⃗n .

• For  each  image  point p⃗i ,  we  increment  the  counters  on  the
corresponding line in parameter space.

• All the parameter space lines L1,…, Ln associated with points p⃗1,… , p⃗n go
through (m ' n ' ) which in turns implies that c(m' , n ' )=n whereas any other
counter on L1,…, Ln is 1.

• Hence, the line is identified by the peak in the counter function c(m ,n) in
parameter space.

For  the  detection  of  multiple  lines,  we  simply  find  the  local  maxima  of  the
counter  function c(m ,n) .  Non-linear  contours  yield  spreads  of  low  random
counter values throughout the parameter space. They can be eliminated by an
experimentally determined threshold on c(m , n) .

It  is  worthwhile  to  consider  the  fact  that  a  finite  parameter  space  is
computationally easier to work with. Towards this end, we may represent the
space  in  polar  coordinates ρ=x cosθ+ y sin θ .  The  variation  of ρ and θ are
therefore finite. 

Hough Transform Algorithm for Lines

• Consider E an m×n binary image in which each element E (i , j)=1 if it
is an edge pixel, and 0 otherwise (in other words, E is the output from
Canny's edge detector)

• Let ρd and θd be arrays containing the discretized intervals of the (ρ ,θ)
parameter  space (ρ∈[0, √m2+n2] , θ∈[0,π]) with (r , t ) their  respective
number of elements (these are the discretization parameters).

• Discretize  the  parameter  spaces  of ρ and θ using  sampling  steps
(δρ ,δ θ)

• Let A(r , t) be an array of integer counters initialized to zero. 

• For each pixel E (i , j)=1 and for h=1,… , t

◦ Let ρ=i cosθd (h)+ j sinθd (h) .

◦ Find k , the index of the element of ρd closest to ρ .

◦ Increment A(k , h) by one.
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• Find  all  local  maxima (k p , h p) such  that A(k , h)>τ ,  a  predetermined
threshold

The output of this algorithm is the set of pairs (ρd (k p) ,θd (h p)) describing the lines
detected in the binary image E in polar coordinates. 

Illustration 2: Hough transform for an input image with
two lines
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