Table of Contents

Selected Problems

- 1. What is the main advantage of performing feature descriptor matching in feature space rather than image space?
- 2. Given the following 5 by 5 image region:

0	0	1	3	4
0	0	2	5	5
1	2	4	8	16
1	3	6	3	4
1	4	8	6	10

compute the Hessian matrix and find its eigenvectors and eigenvalues. Use 5-tap central differences to obtain the necessary derivatives.

- 3. Show that the eigenvectors obtained in the previous question are orthogonal.
- 4. Given the following 3 by 3 image region containing pixel values (comprised between 0 and 7) in the left image of a stereo pair:

$$r_1 = \begin{bmatrix} 3 & 7 & 6 \\ 2 & 1 & 5 \\ 4 & 5 & 2 \end{bmatrix}$$

and two other 3 by 3 image regions in the right image, such as:

	6	5	1	1	5	2
$r_2 =$	2	2	1	$r_3 = 4 $	4	3
	7	3	5	7	4	6

Compute the histogram for each image region. Use these histograms to construct three descriptors $D(r_1)$, $D(r_2)$, and $D(r_3)$, and determine which descriptor among $\{D(r_2), D(r_3)\}$ is the most similar to $D(r_1)$ using Euclidian distance.

5. Explain why scale, rotation, and illumination invariance are important properties of image descriptors.