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Abstract

Two-dimensional image motion is the projection of the three-dimensional motion of objects,
relative to a visual sensor, onto its image plane. Sequences of time-ordered images allow the
estimation of projected two-dimensional image motion as either instantaneous image velocities or
discrete image displacements. These are usually called the optical flow field or the image velocity
field. Provided that optical flow is a reliable approximation to two-dimensional image motion, it
may then be used to recover the three-dimensional motion of the visual sensor (to within a scale
factor) and the three-dimensional surface structure (shape or relative depth) through assumptions
concerning the structure of the optical flow field, the three-dimensional environment and the motion
of the sensor. Optical flow may also be used to perform motion detection, object segmentation,
time-to-collision and focus of expansion calculations, motion compensated encoding and stereo
disparity measurement. We investigate the computation of optical flow in this survey: widely known
methods for estimating optical flow are classified and examined by scrutinizing the hypotheses and
assumptions they use. The survey concludes with a discussion of current research issues.
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1 Introduction

A fundamental problem in processing sequences of images is the computation of optical flow, an
approximation to image motion defined as the projection of velocities of 3-d surface points onto
the imaging plane of a visual sensor. Optical flow is often a convenient and useful image motion
representation. However, there exist other motion descriptors, sometimes more general than optical
flow, such as parametric models of motion, or descriptors adapted to restricted contexts, such as when
elements of the geometry of the scene or the motion of the visual sensor are partially or completely
pre-determined.

The importance of motion in visual processing cannot be understated: approximations to image
motion may be used to estimate 3-d scene properties and motion parameters from a moving visual
sensor [63, 90, 92, 120, 149, 148, 3, 15, 112, 65, 162, 164, 98, 51, 45, 72|, to perform motion segmentation
[23, 115, 124, 103, 137, 41, 75, 28, 9, 125, 44], to compute the focus of expansion and time-to-collision
[123, 117, 140, 74, 142, 29], to perform motion-compensated image encoding [34, 40, 100, 104, 114, 163],
to compute stereo disparity [12, 38, 76, 84], to measure blood flow and heart-wall motion in medical
imagery [122] and, recently, to measure minute amounts of growth in corn seedlings [16, 86].

1.1 Motion and Structure Paradigms

Traditionally, approximations to image motion have been used to infer egomotion and scene structure.
Towards this end, different motion and structure paradigms have been developed, sometimes using
optical flow as an intermediate representation of motion, correspondences between image features,
correlations or properties of intensity structures. These paradigms are generally classified into three

main groups:
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Figure 1.1: a) (right): A frame of the Yosemite fly-through image sequence generated by Lynn Quam
at SRI and b) (left): its optical flow.
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Velocity Three-dimensional motion and scene structure may be inferred from two-dimensional ve-
locity fields [63, 92, 120] by relating the motion and structure parameters to optical flow. These
parameters include instantaneous translation and rotation rates and possibly surface parameters
or relative depth’.

Disparity Image disparities, either established as image feature correspondences or local correlations,
may be used to compute three-dimensional translation vectors, rotation matrices and surface
attributes [90, 149].

Intensity Image intensities and their derivatives are sometimes used directly to obtain motion and
structure parameters [6, 7, 70, 111, 66, 165], thus avoiding an explicit intermediate representation
of image motion such as optical flow or disparity fields.

Usually, relating image motion estimates or intensity derivatives to three-dimensional motion and
structure parameters results in sets of non-linear equations. In addition, each of these paradigms
has its merits and detractions, depending on the intended use and the characteristics of the imagery.
However, their evaluation is beyond the scope of this survey.

1.2 Optical Flow

The initial hypothesis in measuring image motion is that the intensity structures of local time-varying
image regions are approximately constant under motion for at least a short duration [69]. Formally,
if I(x,t) is the image intensity function, then

I(x,t) ~ I(x + 0x, t + 0t), (1.1)

where 0x is the displacement of the local image region at (x,t) after time 6¢. Expanding the left-hand
side of this equation in a Taylor series yields

I(x,t) = I(x,t) + VI - 6x + 6tI; + O, (1.2)

where VI = (I,,1,) and I; are the 1"-order partial derivatives of I(x,t), and O?, the 2"? and higher
order terms, which are assumed negligible. Subtracting I(x,t) on both sides, ignoring O? and dividing
by dt yields

VI-v+1, =0, (1.3)

where VI = (I, I,) is the spatial intensity gradient and v = (u,v) is the image velocity?. Equation
(1.3) is known as the optical flow constraint equation, and defines a single local constraint on image
motion (see Figure 1.2). However, this constraint is not sufficient to compute both components of v as
the optical flow constraint equation is ill-posed®. That is to say, only v | , the motion component in the
direction of the local gradient of the image intensity function, may be estimated. This phenomenon
is known as the aperture problem [150] and only at image locations where there is sufficient intensity
structure (or Gaussian curvature) can the motion be fully estimated with the use of the optical flow

'Figure 1.1 shows one frame from the synthetic Yosemite fly-through sequence, produced by Lynn Quam at SRI.
2The row convention for vectors is used, thus x - y = xy” represents inner product.
3The optical flow constraint equation is one linear equation in the two unknowns v = (u, v).
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Figure 1.2: The optical flow constraint equation defines a line in velocity space. The normal velocity
v is defined as the vector perpendicular to the constraint line, i.e. the wvelocity with the smallest
magnitude on the optical flow constraint line.

constraint equation (see Figure 1.3). For example, the velocity of a surface that is homogeneous or
containing texture with a single orientation cannot be recovered optically. Since the normal velocity
is in the direction of the spatial gradient VI, (1.3) allows one to write

_ —LVI
VI3

Thus, the measurement of spatiotemporal derivatives allows the recovery of normal image velocity.
From this definition, it becomes clear that for optical flow to be exactly image motion, a number of
conditions have to be satisfied. These are: a) uniform illumination; b) lambertian surface reflectance
and ¢) pure translation parallel to the image plane. Realistically, these conditions are never entirely
satisfied in scenery. Instead, it is assumed that these conditions hold locally in the scene and therefore
locally on the image plane. The degree to which these conditions are satisfied partly determines the
accuracy with which optical flow approximates image motion. Alternatively, one can measure the

V| (14)

displacement of small image patches, for example by correlation, in short image sequences (usually
2 or 3 frames). Such image displacements constitute a valuable approximation to image velocity
when certain conditions are met. In particular, the ratio of sensor translational speed to absolute
environmental depth, the 3-d vertical and horizontal sensor rotations and the time interval between
frames must be small quantities [3]. Optical flow may also be computed as the disparity field where,
given two stereo images or two adjacent images in some sequence, features of interest in the images
are extracted and matched via a correspondence process.

Essentially, performing 2-d motion detection involves the processing of scenes where the sensor
is moving within an environment containing both stationary and nonstationary objects. Further-
more, visual events such as occlusion, transparent motions and non-rigid objects increase the inherent
complexity of the measurement of optical flow.
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Figure 1.3: Through apertures 1 and 3, only normal motions of the edges forming the square can be
estimated, due to a lack of local structure. Inside aperture 2, at the corner point, the motion can be
fully measured since there is sufficient local structure; both normal motions are visible.
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1.3 Hierarchical Processing

Traditionally, optical flow was computed using only one scale of resolution, usually defined by the
visual sensor [69], leading to the problem of measuring large image motions. In this case, because of
low sampling rates and aliasing effects, (1.3) becomes inappropriate. A general way of circumventing
this problem is to apply optical flow techniques in a hierarchical, coarse-to-fine framework. Hierarchical
frameworks allow the images to be decomposed in different scales of resolution in the form of Gaussian
or Laplacian pyramids [8, 17, 43, 52]. Because of a low frequency representation at coarser resolutions,
the optical flow constraint equation becomes applicable in the case of large image motions at the
finest resolution [79]. In addition to handling fast motions, hierarchical processing also offers increased
computational efficiency. In such frameworks, velocity or displacement estimates are cascaded through
each resolution level as initial estimates subject to refinement. At the coarsest level, initial estimates
are computed and then projected onto a finer level of resolution and refined once again. The final
estimates are obtained when the refinement reaches the finest level of resolution (see Figure 1.4).
Hierarchical processing is applicable to most optical flow techniques. For example, Glazer [53] adapted
Horn and Schunck’s differential technique to such a framework, Anandan [8] used a hierarchical area-
based correlation method, Heeger [64] proposed a hierarchical energy-based filtering technique in a
Gaussian pyramid and Bergen et al. [19, 20] proposed hierarchical parametric models for optical flow.

1.4 Problems and Issues

Much progress has been made in optical flow computation and yet, its accurate estimation remains
difficult because of numerous theoretical and practical reasons. Theoretically, we believe that optical
flow, as an approximation to image motion, largely determines the lower bound on accuracy. In addi-
tion, scene properties such as surface reflectance and informative image events such as transparency
and occlusion were, until recently, not adequately dealt with in most models of image motion.

Optical flow and image motion The interpretation of intensity variation as pure relative motion
is restrictive because velocity is a geometric quantity independent from illumination conditions.
Hence, estimating optical flow from intensity variation only approximates image motion. Con-
ditions which make optical flow different from image motion include the absence of texture, in
which case optical flow is null, and when the true motion field violates the brightness consistency
model used for its approximation [68]. Uniform scene illumination and Lambertian surface re-
flectance are either explicitly or implicitly assumed in most current optical flow methods which
use some form of the brightness consistency assumption. Highlights, shadows, variable illumi-
nation and surface translucency are phenomena violating the assumption and have only been
studied to a limited extent [101, 20, 47, 77].

Occluding surfaces and independently moving objects The problem posed by occluding sur-
faces is currently being addressed by the research community. Occlusion is difficult to analyze,
despite the fact that occlusion constitutes an important source of visual information: optical
flow at occlusion boundaries may be used to determine the direction of translation [92] and
segment the scene into independently moving surfaces [3, 145, 152]. Until recently, most optical
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ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 10

flow techniques relied on a single-surface hypothesis [69], which is a rare visual event. The diffi-
culty of handling occlusion lies in the fact that image surfaces may appear or disappear in time,
misleading tracking processes and causing numerical artifacts in intensity derivatives.

Transparency Transparent motions created by physically translucent surfaces is also found in im-
agery. The problem posed by transparent motions is mainly one of handling multiple motion
distributions. Classical approaches to optical flow measurement which use single motion models
are clearly inadequate [14]. Recently, mixed distributions and superposition principles have been
applied to transparent motions [20, 77, 131].

Practical issues in computing optical flow were addressed in a recent study [14] which analyzed nine
techniques dating from 1981 to 1990 [69, 105, 107, 151, 94, 47, 46, 64, 8, 133, 155] for accuracy, density
and reliability of measurements. To test the implementations of these algorithms, both synthetic and
real data were used. The observed performance of these algorithms lead to the following conclusions:

Prefiltering and differentiation Temporal smoothing is required in order to avoid aliasing and
numerical differentiation must be done carefully. The often stated requirement that differential
methods require image intensity be nearly linear with motions less than one spatial unit per
frame arises from the use of only two frames, poor numerical differentiation or input imagery
corrupted by temporal aliasing. With two frames, derivatives are estimated using simple back-
ward differences which are accurate only when the input is highly oversampled and the intensity
structure is nearly linear. When temporal aliasing cannot be avoided, hierarchical methods,
operating in a coarse-to-fine manner, provide better results.

Reliability measures The need for confidence measures to indicate the reliability of computed ve-
locities cannot be understated. These confidence measures can be used to threshold optical flow
fields or to weight velocities is post-measurement processing (in a motion and structure calcu-
lation, for example). Most current differential methods do not provide confidence measures.
However, in Barron et al.’s study [14], the smallest eigenvalue of a least-squares matrix [132] was
used successfully. Other possibilities, including the determinant of a Hessian matrix (Gaussian
curvature) [155], the condition number of a solution matrix [47, 151] the magnitude of local
image gradients, the principle curvature values [8] and the eigenvalues of a covariance matrix
[135] were examined [14].

Accuracy Hierarchical correlation methods constitute robust motion measurement schemes for image
sequences with significant contrast changes or large displacements and severe aliasing?. The test
image sequences used by Barron et al. [14] are all appropriately sampled with small motions
(typically between one and four pixels per frame) and were favourable to differential approaches.
In spite of this, and as opposed to differential-based test results, their experiments demonstrate
that correlation methods experience difficulty with subpixel motions as their error depends on the
closeness of image motion to an integer number of pixels. Hierarchical differential-based methods
(using image warping or registration) may provide an alternative to correlation methods.

‘Dutta et al.’s stop-and-shoot sequences constitute interesting image sequence examples [42].
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One of the purposes of this study [14] was to analyze the performance of different optical flow
methods and to and to encourage others to compare numerical results with theirs. Towards this
end, several authors now compare the performance of their techniques with those of this study for
the same image sequences [27, 58, 156, 89, 26, 161, 57, 49]. In addition, some experimental work
evaluating differential techniques has recently appeared [59]. Unfortunately, a quantitative analysis
is often impossible for real image data (to obtain the correct optical flow, one needs the 3-d motion
parameters as well as the 3-d depth values everywhere). In this case, only a qualitative analysis may be
performed, but it was observed that some optical flow fields, while being less accurate quantitatively,
may appear better qualitatively, such as those obtained with methods incorporating global smoothing
constraints. An obvious way to evaluate optical flow computations and yet avoid a quantitative
analysis is to use the computed optical flow field in a motion and structure calculation and examine
the accuracy of the 3-d motion parameters. DeMicheli et al. [98] used optical flow fields obtained with
the method of Uras et al. [151] to estimate time-to-collision and angular velocity in a Kalman filter
framework with good accuracy. More recently, Barron and Eagleson [13] have proposed a motion and
structure algorithm to compute general 1°* and 2"%-order 3-d motion and structure parameters from
time varying optical flow, also in a Kalman filter framework.

1.5 Scope and Purpose

There exist numerous computational models for estimating image velocity, which we classify into
the following main groups: intensity-based differential methods [92, 69, 94, 147, 43, 53, 52, 106, 107,
108, 151, 5, 146, 126, 127, 132, 136, 22, 20, 49], frequency-based filtering methods [47, 55, 64, 153]
and correlation-based methods [8, 12, 78, 83, 130, 133, 143]. In addition, there exist methods for the
computation of discontinuous or multiple-valued optical flow and techniques for performing temporal
refinements of motion estimates as more information becomes available through the image-acquisition
process. These methods are classified into the following groups: multiple motion methods and temporal
refinement methods.

Most of these approaches can be understood as being comprised of three conceptual stages of
processing: prefiltering (low-pass or band-pass) in order to extract signal structures of interest and
to enhance the signal-to-noise ratio, measurement extraction of the basic image structures, such as
spatiotemporal derivatives or local correlation surfaces and measurement integration either by regu-
larization, correlation, or a least-squares computation. These approaches are thought to be broadly
equivalent [1, 2] although differences in implementation can lead to significant differences in perfor-
mance. Given this particular classification, this survey covers the optical flow techniques that do
not require solving the correspondence problem. Hence, areas which are not covered by this survey
are feature-based matching methods involving the correspondence problem and stereo approaches to
image motion.

One of the most fundamental uses for optical flow is the computation of 3-d motion and structure.
Typically, these reconstruction algorithms are ill-conditioned® and the accuracy of optical flow becomes
of extreme importance. Achieving more accurate optical flow calculations requires not only careful
attention to details, but also that realistic imaging properties be taken into account. In this survey,
we examine both older and newer approaches to optical flow, with particular attention devoted to how

% As opposed to the computation of optical flow, which is ill-posed.
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the newer approaches address the accuracy, density and reliability issues raised by Barron et al. [14].
A recent survey [4] shows the current state-of-the-art up to 1988 not only for optical flow algorithms,
but also for feature-based motion algorithms that require a solution to the correspondence problem
and for motion and structure algorithms based on these two paradigms.

2 Optical Flow Techniques

We survey the following classes of optical flow techniques: a) intensity-based differential methods, b)
multiconstraint methods, ¢) frequency-based methods, d) correlation-based methods, e) multiple motion
methods and f) temporal refinement methods. The boundaries between each class of methods are not
always clear: Weng’s method [157] incorporates both phase-based and feature-based matching while
Waxman et al.’s [155] applies a differential scheme on time-varying edge maps. We classify the former
as a phase-based method and the latter as a differential method. In addition, multiple motion and
temporal refinement methods for optical flow overlap with other classes. However, their importance
dictates that they be covered separately. Following this classification, we describe representative
examples of the current state-of-the-art work in optical flow measurement.

2.1 Differential Methods

Differential techniques compute image velocity from spatiotemporal derivatives of image intensities.
The image domain is therefore assumed to be continuous (or differentiable) in space and time. Global
and local 1*% and 2"%order methods based on (1.3) can be used to compute optical flow. Global
methods use (1.3) and an additional global constraint, usually a smoothness regularization term, to
compute dense optical flows over large image regions®. Local methods use normal velocity information
in local neighbourhoods to perform a least-squares minimization to find the best fit for v. The size of
the neighbourhood for obtaining a velocity estimate determines whether each individual technique is
local or global. A surface or contour model may also be used to intergrate normal velocities into full
velocity. Occlusion, manifested by discontinuous optical flow, can be analyzed by line processes, mixed
velocity distribution or parametric models. These techniques perform the segmentation of optical flow
into regions corresponding to various independently moving objects or surfaces. Large 2-d motions
may be analyzed in a hierarchical framework, possibly in conjunction with warping methods.

2.1.1 Global Methods

Often, an explicit use of (1.3) is made [5, 20, 43, 53, 52, 69, 105, 106, 107, 126, 127] in conjunction
with a regularization term (usually a smoothness constraint). Combined, they form a functional which
is minimized over the image domain. Regularization by requiring a slowly varying optical flow field
was first introduced by Horn and Schunck [69] to disambiguate normal measurements and justified by
the claim that neighbouring velocities, if corresponding to the same object surface, should be nearly
identical. These constraints were used to define an error functional:

/D((VI-V-I-It)2 422 (V)L (Vv)))dx (2.5)

50ften, the entire image is considered.
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over a domain of interest D, where v = (u,v). The solution for v is given as a set of Gauss-Seidel
equations which are solved iteratively. Uniform illumination (at least locally) in the image domain of
interest, orthographic projection, and pure translational motion parallel to the scene are conditions
that must be met for the brightness constancy assumption (% = 0) to be satisfied. These hypotheses
reduce the set of admissible visual events to restricted cases of realistic time-varying imagery and
motivated the investigation of constraints generating more applicable equations. For instance, motion
may cause a change in the density of features in a local image neighbourhood. Schunck [128] accounts
for this by modifying (1.3), using the continuity equation from fluid dynamics and transports theory
to obtain:

VI-v+1(uy +vy) = —1. (2.6)

This equation is equivalent to (1.3) but for an additional term containing flow divergence which ex-
presses expansion or compression of an image neighbourhood as it undergoes an affine transformation’.
Nagel [108] suggests that the optical flow constraint equation should be explicitly based on the geo-
metric properties of the 3-d scene and derives

(2.7)

2P PPT
zPT  pPpPT

VI-v+It:4I<—

where P is a 3-d environmental point, P is its 3-d velocity and 7z is a unit vector along the line-of-sight
axis. This equation assumes a known scene geometry. An experimental evaluation of these constraints
(equations (1.3), (2.6) and (2.7)) in [159] demonstrates that (1.3) has slightly better accuracy when
applied to ray-traced synthetic data. Negahdaripour and Yu [113] propose replacing (1.3) with a
more general constraint that models a linear transformation over time of the image intensity values.
Prince and McVeigh [122] derive the variable brightness optical flow equation for an application using
MR (magnetic resonance) image sequences. This equation accounts for the fact that % # 0 in these
images by modelling intensity changes over time as a function of MR parameters, motion and an initial
magnetically induced tag pattern. Luettgen et al. [95] present a multiscale stochastic algorithm to
regularize Horn and Schunck’s smoothness constraint. The algorithm is non-iterative and provides
confidence measures (multiscale error covariance statistics) to determine the optimal resolution level
of optical flow fields. The framework is generalizable to other regularization problems. Mukawa
[101] proposed a regularization method to compute optical flow with a global smoothness constraint
and other constraints that model both diffuse and specular lighting effects (via Phong shading) for a
moving object in a scene with one light source. The term being regularized is

E = > (u?C + ufj + 02 + 1)2) +A) (g4 Lu+ L+ I)?
R R
+ opy ((qnlc —cl)? + (g — cIy)Q) +vy ((’i + (’z) =0. (2.8)
R R

The first term incorporates Horn and Schunck’s smoothness constraint [69]. The second term is the
optical flow constraint equation with an additional term ¢ that is the difference of diffuse and specular

" An affine transformation includes translation, rotation and foreshortening and may be expressed with six parameters:
the image velocity and its 1°*-order derivatives.
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luminance over time, as first suggested by Cornelius and Kanade [37]. The third and fourth terms
exploit a relationship between the spatial derivatives of luminance (g, and ¢,) and the original image
intensity derivatives: ¢, = ¢l and ¢, = cl,. c is a function that involves computing the ratios of
diffuse luminance at different times. The fourth term ensures that ¢ varies smoothly. A, 4 and v are
simply constants weighing the relative importance of each term in the minimization.

2.1.2 Local Models

Local models of velocity assuming single motion patterns are also common. For example, Lucas and
Kanade use a local constant model for v [93, 94] which is solved as a weighted least-squares solution
o (1.3). Velocity estimates are computed by minimizing

Z W2(x)(VI(x,t) - v + I;(x, 1)), (2.9)

XER
where W (x) denotes a window function and R is a spatial neighbourhood. Solutions for v are obtained
in closed form. Modifications suggested by Simoncelli et al. [132] allow the use of the eigenvalue of
the least-squares matrix involved in solving (2.9) as a confidence measure in subsequent processing.
Chu and Delp also use a local least squares approach [36] and solved (1.3) with a total least-squares
calculation that accounts for errors in I; and also for independent errors in I, and Iys. Weber and
Malik [156] also use total least-squares in their multiconstraint approach. Campani and Verri [33] use
a local model which assumes 1%!-order variation in local motion measurements: an overconstrained
system of equations is solved with least-squares to recover velocity and its spatial derivatives. However,
these local models tend to react poorly in the presence of multiple motions within the neighbourhoods
over which they operate.

The aperture problem may be analytically resolved by differentiating the optical flow constraint
equations to obtain equations involving 2"%-order intensity derivatives [62, 105, 107, 124, 147, 151].
These constraints generally provide two or more equations in the two components of v and, when
nonsingular, can be used to obtain full motion estimates. For instance, Uras et al. [151] use the
constraint

(VVI)v = VI, (2.10)

which results in an analytical expression for both components of v at a single image point. Nagel
[107] shows that image points with high Gaussian curvature, such as grayvalue corners, allows the
recovery of full velocity in closed form?. Both Haralick and Lee [62] and Tretiak and Pastor [147] use
a combination of (1.3) and (2.10) to overcome the aperture problem at individual image points and
to estimate full velocity.

Another local approach, which avoids the need to estimate intensity derivatives altogether, uses
the Gauss divergence theorem to convert the optical flow constraint equation into

/(Im—I-Iy—I—It)dV:/uldydt—i-/vldxdt—/ I(um—i-vy)dxdydt—l—/ldxdyzo, (2.11)
|4 S S |4 S

8Consider fitting a line y = mx + b to noisy y values. In standard least-squares, this is accomplished by minimizing
the vertical distance of each y value from the fitted line assuming noiseless x values. In total least-squares, it is assumed
that there is noise in both the z and y values and the technique minimizes the perpendicular distance of y values from
the fitted line [166)].

?Gaussian curvature may be expressed as det(VVI).
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where S and V' denote local integration over surfaces and volumes of intensity data [56]. The size of
the surface and volume neighbourhoods must be sufficient to overcome the aperture problem.

2.1.3 Surface Models

Pioneering work by Longuet-Higgins and Prazdny [92] examines the form of the optical flow field for
a moving monocular observer in a rigid scene. They derive the well known image velocity equation,
relating 3-d motion and depth parameters to 2-d image motion (approximated as optical flow). They
show that these parameters could be recovered from optical flow and its 1°* and 2"%-order derivatives.
Longuet Higgins [91] derive the conditions necessary to recover motion and structure from planar
surface motion. It is shown that two planes with distinct surface orientations that are engaged in
different 3-d motions may have the same optical flow field. Waxman and Wohn [154] describe the
dual nature of these motion and structure parameters: one set of parameters can be derived from
the other. Subbarao and Waxman [141] demonstrate that these solutions are unique over time. Horn
[68] proves that multiple interpretations of a single optical flow field generated by arbitrarily shaped
surfaces occur only rarely.

A number of planar motion techniques rely on normal velocity being available!’. Waxman and
Wohn’s Velocity Functional method [154] assumes that a velocity at a point on a curved surface can
be approximated by a 2"¢
obtains

-order Taylor series expansion about that point. For velocity v = (u,v), one

ov  ov 10%v 0%v 10%v

vizy) = V(O’O)—i_%—i_@_y—l—a(?x? + 0xdy +§8y2'

(2.12)

Using the normal velocity constraint equation, v, = v - n, a linear equation in twelve unknowns, the
two components of v and their 1°* and 2"%-order derivatives, is obtained. Given twelve or more normal
velocities in a local neighbourhood on the curved surface, these parameters can be recovered. In the
event that the local surface is planar, then

9%v 0% 0%v 0%u

= (9= d — = — 2.1

allowing (2.12) to be written as one equation in eight unknowns. Hence, only eight normal velocities
are required to recover the velocity of a planar surface.

Murray and Buxton [102] derive a relation between normal velocity parameters of a planar surface,
leading to a linear equation of the form

Vil =cp, (2.14)

where vectors ¢ and p contain expressions for image coordinates of normal velocity, the 3-d motion
parameters and the planar surface normal. Given eight normal velocities, the components of p can be
determined and full velocity is obtained as:

2 2

T T T
v = (pix+py —paf +p77 +p87y,P4-7? +psy — pef +p77y +p8y7)- (2.15)

19The measurement of 1°*-order spatiotemporal intensity derivatives allows the computation of normal velocity.
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Further mathematical manipulation of p yields equations for the recovery of 3-d motion parameters
and surface orientation. If the aperture problem cannot be overcome for some image locations in a
neighbourhood, but that surface parameters can be estimated, then, because of the use of a surface
model, an image velocity for each of these locations may be inferred.

2.1.4 Contour Models

Many differential approaches to image motion estimation rely on the presence of contours or edges
in image sequences [32, 41, 67, 118, 155]. The computational stages of these methods consist of the
extraction of relevant image contours with prefiltering techniques followed by a differential estimation
of image motion. Essentially, contours or edges exhibit strong signal-to-noise ratios which facilitate
their extraction. In addition, it is a common belief that they correspond to significant image structures,
although this claim cannot be supported in any rigorous sense [46]. In addition, computing optical
flow at edges often leads to sparse flow fields (usually, 10% of the field or less, depending on the density
of edges).

Hildreth [67] proposes a smoothness constraint to be applied to normal velocity estimates along
contours extracted from time-varying images. For a contour S, the normal velocity estimates should
minimize

ov

——ds. 2.1
559 (2.16)

If at least two normal velocity estimates along S are different, then the minimization of the above
integral yields a unique velocity field at contour S (see Figure 2.5). In practice, the functional

v 2 R 9
[ (55) +B(v-a - |v.lz)’as, (2.17)
S
where n is a unit vector in the direction of v, is minimized along contours. (3 is a weighting factor
and (v -f — ||vi]2)? expresses the squared difference between estimated normal velocity and that

predicted by the solution. Gong and Brady formulate a similar constraint to be minimized which
includes a least-squares difference term for tangential velocity [54]:

2
/(g—;) +B(v-i— |vi]2)%dS +a(v-t— |v]2)%dS, (2.18)

where t is a unit vector perpendicular to n and « is a scalar expressing the confidence associated
with the tangential component of v, proportional to the determinant of the Hessian matrix of the
underlying intensity structure. They demonstrate that the tangential component of v can be reliably
estimated wherever the determinant of the Hessian is non-zero.

Buxton and Buxton’s method [32] for estimating optical flow is based on a model of the motion of
edges in image sequences. They note that the signal-to-noise ratio is enhanced at locations of significant
image features such as edges. Their approach, guided by psychophysical evidence of spatiotemporal
filtering in human early visual processes, is a direct extension of the Marr and Hildreth centre-surround
edge detection operator [97]. They compute spatiotemporal zero-crossings by convolving

S(x,t) = — ((VQ + %%) G(x,t)> (2.19)
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Contour
Norma Flow
/ Estimates Along
The Contour
True Velocity

——

Figure 2.5: If at least two normal flow estimates along a contour are different, then the full velocity
of the contour can be uniquely determined.
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with an image sequence, where the first term is the d’Alembert operator and the second term is a
Gaussian function, given by

3
Glx,t) = u (%) ? lallue) (2.20)

™
where the parameters « and w control the spread of the envelope. Normal velocities can then be
estimated at zero-crossings by computing the partial 1*!-order derivatives of S(x,t) as

SiVS

_ (2.21)
IVSII3

Vi
with a least-squares calculation. The choice for the values of the parameters a and u is made a prior:
since the distribution of edges in the image is unknown.

Duncan and Chou define a temporal edge detector which minimizes the effects of temporal vari-
ations in illumination [41]. The edge detector is the 2"%-order temporal derivative of a Gaussian
function:

2 3
Si(x,t) = 88(;(” = 5; (1 — 25%%)e! st (2.22)
which is convolved in time with the image sequence to produce a set of zero-crossings induced by
moving edges. The authors theoretically and experimentally show that variance in illumination does
not create zero-crossings in S;(x,t). Central differences are used to estimate the 1%!-order derivatives

of S; in local neighbourhoods. Normal velocities are computed as

VSt-vlf%:() (2.23)

which is equivalent to the usual optical flow constraint equation. Lines defined by v, are then
intersected in local image regions to obtain full velocity estimates. Successful experiments are presented
with synthetic images containing significant illumination variations.

Waxman et al. [155] apply spatiotemporal filters to edge maps in order to measure velocity at
edges extracted with DOG zero-crossings [97]. Given a binary edge map E(x,t), an activation profile
A(x,t) is created by smoothing the edge map with a spatiotemporal Gaussian filter:

A(x,t) = G(x,t,04,0y,04) % E(x,1) (2.24)

to which a differential method is applied. At edge locations, where the Gaussian profiles are centered,
the spatial gradient of A should be zero, and therefore a 2"%-order approach is adopted. The velocity
estimates are given by

v — (AxtAyy - AytAzy AytA-TfE - AxtAx?J) , (225)

AgpAyy — A2, " Ay Ay, — A2,

where derivatives of A are computed by convolving the appropriate Gaussian derivative kernels with
the edge maps.

A different method for tracking edges via zero-crossings is to use a radial configuration of DOG
operators. Perrone [118] presents such a model to measure normal velocities of moving edges. In the
radial configuration, temporal differences in the responses of the operators provide sufficient infor-
mation towards determining normal velocity. A constant model can then be applied to the normal
velocity distributions to obtain full velocity.
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2.1.5 Multiconstraint Methods

Multiconstraint methods use multiple instances of (1.3) or (2.10) to provide unambiguous expressions
for image motion at single image points [160, 89, 139, 136, 156, 99, 146]. Liu et al. [89] use equations
(1.3) and (2.10): they expand the spatiotemporal image with Hermite polynomials and solve for v
using standard least-squares. Residual of fit, condition number and determinant of the least-squares
matrix act as confidence measures on the final optical flow field. Overconstrained systems of equations
can also be obtained with multiple light sources [160] or by using images acquired with visual sensors
tuned to different regions of the light spectrum. Spectral images include those in the visible (3 colour
planes) and infrared spectrum. Markandey and Flinchbaugh show that their multispectral approach
produced similar accuracy to Horn and Schunck’s algorithm [69] for synthetic image data and an
outdoor scene [96].

Functions other than (or coupled with) intensity may be substituted in the optical flow constraint
equation to obtain overconstrained systems. These functions can be thought of as the output of
operations applied to the image intensities. For example, responses of pairs of linearly independent
filters can be used jointly with the optical flow constraint equation for this purpose [139, 136, 156].
Mitiche et al. [99] use an overconstrained system of equations constructed from the optical flow
constraint equation for the same point in a number of different images, derived from the original
one, generated by applying functions to compute local values for contrast, average, variance, entropy,
median and power content. Srinivasan proposed a similar approach, using an overconstrained system
of equations derived from images that are generated by applying six specialized spatiotemporal filters
on the original images [139]. However, the aperture problem still cannot be resolved when facing
singularities in overconstrained system of equations: these occur for particular intensity structures,
including uniform intensity regions, highly structured or periodic textures, etc.

2.1.6 Hierarchical Approaches

Differential optical flow methods also exhibit problems with large 2-d motions, due to low sampling
rates, thus violating the Shannon sampling theorem. Applying differential methods in a coarse-to-
fine manner alleviates such problems. Image warping may be used to keep the images sufficiently
well registered at the scale of interest so that numerical differentiation can be performed. Bergen et
al.’s hierarchical framework [20] unifies several different model-based optical flow methods. Using a
parametric model based on affine transformations, scene rigidity, surface planarity or general motion
in an image region allows one to both judge the quality of the fit to the data (perhaps splitting the
region if necessary) and to fill in sparse optical flow fields with the computed parameters.

Differential-based hierarchical frameworks are proposed by Glazer, Enkelmann and Battiti et al.
[17, 43, 52, 53]. In addition, Bergen et al. have shown that many models of motion could be expressed
within a hierarchical framework [19]. Adaptive hierarchical methods with respect to scale have also
appeared [17, 81, 158, 95].

2.2 Frequency-Based Methods

A second class of optical flow techniques are based on the use of velocity-tuned filters. These techniques
use orientation sensitive filters in the Fourier domain of time-varying images [1, 47, 55, 64, 153].
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Among advantages brought by these methods, it is found that motion-sensitive mechanisms operating
on spatiotemporally oriented energy in Fourier space can estimate motion in image signals for which
matching approaches would fail. For example, the motion of random dot patterns may be difficult
to capture with feature-based or correlation-based methods whereas, in Fourier space, the resulting
oriented energy may be more readily extracted to compute motion [1].

The Fourier transform of a translating 2-d intensity signal specified in (1.1) is

I(k,w) = Iyk)§(v'k + w), (2.26)

where Iy(k) is the Fourier transform of I(x,0) and x denotes spatial position. § is a Dirac delta
function and k,w denote spatiotemporal frequency. This yields the optical flow constraint equation
in frequency space:

vk 4w =0, (2.27)

which shows that the velocity of a translating 2-d pattern is a function of its spatiotemporal frequency
and forms a plane through the origin of the Fourier space.

2.2.1 Orientation Selective Filtering

Adelson and Bergen [1] propose a class of computational schemes which exploits the fact that detecting
image motion is equivalent to extracting spatiotemporal orientation. Gabor filtering is presented as a
technique for extracting spatiotemporal energy. A Gabor filter is a Gaussian function multiplied by a
sine or cosine wave. For example, the function

2

1 iR z_+y_+t_
mxn:——T———e(% 27y W)mmﬂxk+wm (2.28)
(2m) 20,0404

2

is a 3-d sine (odd) Gabor filter, where (k,w) is the central frequency at which response amplitude
peaks. Adelson and Bergen note that the response pattern of such filters is affected by the contrast
of the signal: stimuli with low contrast generate low response amplitudes and wvice versa. Since the
measurement of velocity is independent of contrast amplitudes, it is suggested that one uses ratios of
responses from different filters for the extraction of velocity estimates.

Jahne [73] demonstrates that detection of spatiotemporal orientation is analogous to eigenvalue
analysis of inertia tensor. For instance, a point at the origin of Fourier space corresponds to a region of
constant intensity and corresponds to null eigenvalues in tensor space. Also, a line in frequency space
is a spatially oriented pattern moving with constant velocity and its normal velocity can be obtained
with the eigenvector corresponding to the null eigenvalue. Finally, a plane through the origin expresses
a spatially distributed pattern moving with constant velocity and the eigenvector associated with the
maximum eigenvalue of the inertia tensor gives the full velocity of the pattern. Hence, Jihne [73]
suggests the use of inertia tensor analysis for detecting spatiotemporal orientation and to avoid the
computational expense arising from the large number of filters involved in both Heeger’s and Fleet and
Jepson’s methods [47, 64]. However, this algorithm was only tested on simulated image data. Barman
et al.’s work [11] is similar to Jdhne’s, as they use spatiotemporal filtering to recover both velocity
(and depth-scaled disparity in the case of motion stereo) and acceleration. A tensor is computed
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from the response of six or more quadrature filters, evenly spread in one half of the Fourier space.
Eigenvalues and eigenvectors of the tensor allow one to determine which of several formulae can be
used to compute full or normal velocity, if possible. Acceleration may also be recovered as curvature
of the spatiotemporal surface in frequency space [10].

Often, these frequency-based velocity techniques are presented as biological models of human mo-
tion sensing: Watson and Ahumada [153] have defined an orientation-selective mechanism which agrees
with psychophysical measurements of human motion sensing. Their mechanism uses a combination of
2-d spatial Gabor functions and 1-d temporal filters tuned to several orientations for the estimation
of local image velocity. The integration of the responses of these sensors discriminates local measure-
ments as each sensor within a directional group provides a linearly independent component of the
velocity vector. Grzywacz and Yuille also propose a frequency-based model of visual motion sensing
[55]. Their model uses 3-d orientation-selective Gabor filters to measure motion energy in frequency
space. Estimates of velocity are also obtained by integrating the responses of populations of filters on
a local basis.

2.2.2 Phase-Based Filtering

The method developed by Fleet and Jepson [47] defines component velocity in terms of the instanta-
neous motion of level phase contours in the output of band-pass velocity-tuned Gabor filters''. These
filters are used to decompose the input signal according to scale, speed and orientation. Each filter
output is complex-valued and can be expressed as

R(x,1) = p(x, 1)ei 01, (2.29)

where p(x,t) and ¢(x,t) are the amplitude and phase part of the output signal. The component 2-d
velocity in the direction normal to level phase contours is given by

= _¢t(xﬂ t)Vgﬁ(X, t) ]
IVo(x, 1)l

¢1(x,t) is the temporal derivative of the phase and V¢(x,t) is its spatial gradient. Phase derivatives
are computed using the identity

(2.30)

Im[R*(x,t)VR(x,t)]

V¢(x7 t) = |R(X, t)‘Q )

(2.31)

where R* is the complex conjugate of R(x,t), VR(x,t) is the gradient of R(x,t) and Im denotes the
imaginary part of a complex number. Fleet and Jepson relate velocity to local phase information
because of the relative insensitivity of the phase signal to amplitude variations due to changes in
scene illumination. These distortions are often a consequence of the geometry of perspective projec-
tion. Component velocity can be obtained from the output of each velocity-tuned channel on the
condition that the phase signal is stable. Usually, instabilities are associated with neighbourhoods
about phase singularities which may be detected with a constraint stating that the distance between

"The term component velocity is used to denote the velocity normal to local phase structure while normal velocity
denotes velocity normal to local intensity structure.
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the instantaneous frequency and the peak tuning frequency of the filter should be minimal. Such a
constraint, when met, is sufficient to avoid velocity estimation at phase singularities. Because each
channel is considered independently, there may be multiple measurements at a single image location.
Then, if there is a sufficient number of estimates, full velocity is recovered at a single point or in a
small neighbourhood by solving a linear system of equations relating the measurements to an affine
model of optical flow. As currently formulated, Fleet and Jepson’s method does not provide confidence
measures. There is also a requirement for a large number of filters to cover frequency space. It is also
important to note that local phase information is also used in stereopsis for the measurement of image
disparities by Jenkin et al. [76] and Langley et al. [84]. Weng [157] demonstrates that the phase
part of a signal in a particular frequency channel provides sufficient information to reconstruct the
signal within a multiplicative constant. Windowed Fourier phase is used as the correlation primitive
in Weng’s matching algorithm.

Phase is more robust than either intensity derivatives or energy-based filter responses for varying
scene illumination. This can be seen intuitively by considering a signal of the form A cos(wt + ¢).
Changing the amplitude, A, of the signal will change its derivative values or the response of an energy
based (amplitude-squared) filter but will have little effect on the phase of the signal or its derivatives.
Phase-based methods will also respond to the component velocities of multiple motions due to occlusion
or transparency, although a suitable measurement integration method, such as a mixed velocity model,
is required to cluster them into the correct full velocities. Typically, frequency-based methods do not
provide a means of assigning confidence to the computed velocities. Thresholds may be provided
[47, 64] but their use is binary: either a velocity is found at an image location or one is not.

2.2.3 Hierarchical Approaches

Heeger presents a computational model for the estimation of image velocity which uses quadrature
pairs of spatiotemporal Gabor filters [64]. A family of Gabor-energy filters, tuned to the same spatial
frequency band, but to different spatial orientations is defined. The magnitude of the spatial frequency
tuning is therefore invariant and other sets of filters can be designed for different frequency channels.
However, a single set of such filters can be cascaded through a Gaussian pyramid in order to cover
different channels. For a translating 2-d pattern, the responses of these filters are concentrated about
a plane in frequency space. Parseval’s theorem is used to derive the expected responses R;(v) of the
Gabor-energy filters for a translating stimulus:

RZ(V) — 6L47TQU£U§U?H,'(V,ki,wi) (232)
where

v-k; +w;

Z(V, l,wl) (UU:CUt)Q + (1)Uy0t)2 + (U:cgy)

5"

The variables o0, 0, and o; are the standard deviations of the Gabor filters. If m; is the measured
energy for filter 4+ and m; and R; are the sums of m; and R; which belong to the set of filters M;
having the same spatial orientation as the ‘" filter:

m; = ij

JjEM;



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 23

Ri= ) Rj(v),

JeM;
then a non-linear least-squares solution for v which minimizes the difference between the predicted
and measured energies,

=% (m - m‘Ri(V))Q (2.33)

S\ Ri(v)) .
should yield the correct estimate for v. Certainty measures for velocity estimates are expressed as
conditional probability densities. A computationally efficient method of convolving Gabor filters,
exploiting their separability properties, is also presented by Heeger.

2.3 Correlation-Based Methods

Numerical differentiation is sometimes impractical because of small temporal support (only a few
frames) or poor signal-to-noise ratio [14]. In these cases, differential or frequency approaches may not
be appropriate and it is natural to consider matching methods.

2.3.1 Correlation-Based Matching

Typically, good, matchable features, such as corner points, are sparse while poor, easily mismatched
features, such as edges, are denser. Even when reasonably unique features are available, establishing
the correct correspondences can be problematic. Also further complicating matters is occlusion of
features that may lead to matching errors.

Correlation-based matching approaches are less sensitive to these problems: they do not rely on
the presence of significant image features and variable correlation window sizes can be used near
occlusion boundaries to handle multiple motions [87]. These approaches define displacement (which
is an approximation to velocity) as a shift that yields the best fit between contiguous time-varying
image regions. Most of these approaches originate from computational stereopsis, where the task is to
correlate image regions of a pair of images taken from different viewing positions, under perspective
projection. It is assumed that, at least locally, distortions caused by the shift in the viewing angle
are negligible [76]. Matching image regions often amounts to maximizing a similarity measure. In
particular, a correlation coefficient between two functions f and ¢ is defined as the integral of their
product:

/ flx+d0x)g(x)dz.
D

Finding §2 which maximizes this integral amounts to finding the shift between f and g, if f(x+dx) =
9(z).

Kories and Zimmerman use a monotonicity operator for matching image regions in adjacent images
[83]. The operator is a 3 x 3 window in which the central grayvalue is compared with its neighbours
and classified according to the number of grayvalues that have a lower value than the central one. The
matching process proceeds by first merging adjacent grayvalues sharing the same class. The centroids
of grayvalue regions sharing the same classification are then tracked with a simple correlation algorithm
to establish disparity estimates.
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Sutton et al. [143] proposed a correlation method which allows linear deformations of small image
regions. A bilinear reconstruction of the intensity surface is computed for local image regions €2;. The
shift of such an intensity surface under linear deformation is expressed as

X’Qi = xq,; +dq, + Vdg; (2.34)

where x', is the position of the deformed neighbourhood €;, Vdg, are the deformation parameters
and d is the shift of €2; in time. A correlation coefficient

C(dos. Vo) = [ ( — 2)dx (2.35)

which describes the squared differences of neighbourhoods €2; and €)';, is minimized by a search in the
motion domain for values of dg; and Vdg;. The estimates for these six parameters must be obtained
iteratively, as no closed form solution for C' is presented.

A region matching method that allows affine deformations of intensity is presented by Kalivas and
Sawchuk [78]. An objective function that is defined in terms of a displacement field undergoing an
affine transformation is minimized over the entire image.

In order to avoid the computational expense of iterative minimizations of functionals, Little et al.
[88] suggest that the use of partially overlapping regions for matching is sufficient to approximate an
isotropic smoothness term imposed on disparity estimates. Their approximation of the functional

/D(gb(l(x, t), [(x + 0tv,t + 6t)) + AM(VvVv’))dx (2.36)

where ¢ is a correlation operator, is shown to be correct as the extent of the matching region becomes
larger.

2.3.2 Hierarchical Approaches

In the presence of large disparities, non-hierarchical correlation algorithms become sensitive to false
matches, due to the increase in search spaces required to handle the faster motion. In addition, the
correlation of image areas is, in general, computationally intensive. In order to reduce the amount of
computations and the potential for mismatches, one may use coarse estimates of motion to direct the
matching process. Ogata and Sato’s algorithm [115] provides the correlation computation with coarse
estimates of motion obtained from velocity-tuned Gabor filters. These estimates can then be used to
restrict the sizes of search areas and thereby reduce the number of computations usually necessary to
obtain disparities.

The size of correlation windows is an important parameter for region matching. For instance, within
a correlation window, there must be enough variation in the signal to reliably determine disparity.
However, the variation of disparity within the same window must remain negligible as local matches
operate under the hypothesis of a constant velocity model. The optimal window size then depends
on the structure of the underlying signal. Okutomi and Kanade [116] propose a statistical model
of disparity within correlation windows which assumes that disparity values are constant but exhibit
increasing uncertainty as they are farther from the central point of the window. This model establishes
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a relation between the window size and the uncertainty of disparity. This relation allows one to
minimize the uncertainty of the measurements by adjusting the size of the correlation window.
Hierarchical matching techniques can improve the accuracy of the disparities by operating on
several frequency channels extracted from the images to be processed. Low frequency channels are
used to estimate large disparities which can be refined by adding higher frequency channels into
the matching process. Anandan’s method [8] is based on a Laplacian pyramid and a coarse-to-fine
SSD-based matching strategy. The Laplacian pyramid allows for the estimation of large inter-frame
disparities and helps to enhance image structure, such as edges, that is thought to be important for
matching (see Figures 1.4 and 2.6). The SSD (sum of squared difference) measure is defined as

Sx,d) = > > W(i,j)I(x+ (i.4),t) — I(x+ (i,4). t + 1)) (2.37)
j=lni=1n

where W (i, j) denotes a weighting function and d is restricted to the square neighbourhood of size
(2n +1)? centered at x. At the coarsest level, the correct displacements are assumed to be one spatial
unit per frame or less. SSD minima are first located to integer accuracy within small image regions.
Subpixel dispacements are then computed by finding the minimum of a quadratic approximation to
the SSD surface about the integer location which best minimizes S(x,d). Confidence measures are
derived from the principal curvatures of the SSD surface and used as weights in the functional

/ tr((Vd)T (VA)) + maz(d - émaz — do - émaz)? + Cmin (d - émin — do - Emin)?dx (2.38)
JD

which is to be minimized over the entire image velocity domain D. €4, and é,,;, are the normalized
principal directions of maximum and minimum curvature. dy denotes the displacements obtained by
the minimization of S(x,d) in the laplacian pyramid (usually, three levels are used). At the coarsest
level, where the largest motion is less than one spatial unit per frame, SSD minima are located to
subpixel accuracy by finding the minimum of the SSD correlation surface and smoothed using iterative
equations based on (2.38). Then, using an overlapped projection scheme, these displacements are
projected to the next level in the pyramid. Matching and smoothing are performed in this manner at
each level in the pyramid from the coarsest level down to the finest level, the original image, yielding
the final optical flow field.

Singh’s approach [135] is similar to Anandan’s method [8] as it also uses SSD minimizations and a
two-stage computation. The first stage consists of the computation of SSD values with three adjacent
high-pass filtered images 1,1, Iy and I;. The three-frame SSD surface is computed as

S(x,d) = Sp(x,d) + So,11(x, —d). (2.39)
The surface S is then converted into a probability distribution, defined as
R.(d) = etkSxd) (2.40)
where

~ 1n(0.95)
~ min(S(x,d))’
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Figure 2.6: Hierarchical image decomposition: the original images are decomposed in a hierarchical
set of frequency channels prior to optic flow estimation.
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Velocity estimates d. are obtained by computing the weighted average using the R.(d) values for a
given image area. Covariance matrices S, associated with disparities d. are also computed.

The second step of Singh’s algorithm propagates velocity using a neighbourhood smoothness con-
straint. Again, a weighted average approach is used in computing d,, an average of d. over small
image regions. d. and d, are then used to create a covariance matrix S,,. The correct disparity field
minimizes the functional

/ (d = do)SH(d — dy)T + (d — d.)S+(d — d.)Tdx, (2.41)
JD

which expresses the requirement of a smoothly varying disparity field across D. The eigenvalues Ay
and My of matrix [S,, + S.]*! act as confidence measures for the estimates. Singh recommends the use
of a Laplacian pyramid with a coarse-to-fine strategy as in [8] to estimate larger velocities. In addition,
Sing’s framework was extended with a Kalman filter approach in order to record motion estimates
along with their confidence measures and to integrate new measurements with existing estimates [134].

2.4 Multiple Motion Methods

Many phenomena can cause multiple image motions. Among them, occlusion and transparency are
important in terms of their occurrence and significance in realistic imagery. In addition, their infor-
mation content is useful to later stages of processing, such as motion segmentation and 3-d surface
reconstruction. Occlusion boundaries are described by the partial occlusion of a surface by another,
while transparency is defined as occlusion of a surface by translucent material. In realistic imagery,
one finds occlusion to be the most frequent cause of discontinuous motion'?.

Among the limitations inherent to gradient-based methods, the requirement of differentiable in-
tensity structures throughout the image domain is perhaps the most restrictive. At motion disconti-
nuities where most of the information resides, the use of (1.3) becomes problematic, since the intensity
derivatives theoretically do not exist. In addition, typical correlation-based techniques are sensitive
to occlusion as image structures near occlusion boundaries may appear or disappear in time, possibly
leading to mismatches. Furthermore, local optical flow constraints such as (1.3) and local correlation
methods are often coupled with global requirements which impose a spatial continuity on optical flow.
It is obvious that such isotropic requirements cannot be satisfied in general, as imagery often contains
motion discontinuities.

2.4.1 Line Processes

Other functionals, that attempt to estimate discontinuous motion, have been developed. One strategy
to handle occlusion involves using binary line processes [50] that explicitly model intensity disconti-
nuities. Koch et al. [82] relax the imposition of a smoothness constraint at those pixels having a large
spatial gradient. This prevents smoothing over discontinuities and assumes that motion discontinuities
occur in the same location as intensity discontinuities [119]. Black [22] also shows how line processes
could be used in a robust (Kalman filter-like) framework.

12Prazdny [121] was one of the first to explicitly allow for disparity discontinuities locally in two stereo images.
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The non-binary inhibition of smoothness across intensity contours, was proposed by Nagel [105,
106, 107, 110]. This approach is based on the minimization of the functional

/ (VI-v+ 1)+ 22 tr((V) W (Vv)))dx (2.42)
D
where
W 1 L2+6 —L1,
IVI|3+25 \ —LI, L>+6 )’

in which the quantity (u,l, — ungE)2 + (vgy — vny)Q, representing the spatial variation of v in the
direction perpendicular to the image gradient, is minimized across intensity contours. This functional
is known as the oriented smoothness constraint. The minimization procedure can be implemented
using finite differences [14] or finite elements [80, 126]. This oriented smoothness approach has been
recently extended into the temporal domain [109]. A similar method using an intensity-weighted
smoothing procedure is presented by Aisbett [5]. This approach is characterized by the inhibition of an
isotropic smoothness constraint for image regions containing significant intensity variations. Contrary
to Nagel’s method [107], the inhibition of the smoothness constraint is not directional. In addition,
the image intensities are assumed differentiable and the domain of application of the algorithm is
explicitly restricted to images which satisfy this requirement.

Closed curves may also be used to separate image regions exhibiting different velocities. Schnorr
[127] proposes a method which consists of defining such a curve, delimiting an arbitrary area around
the region where the existence of an independently moving object is assumed, thus creating two
domains ; and Q,. Given two velocity fields v; and v,, the closed curve defining the two domains is
iteratively refined by minimizing the functional

/Qif(Vi,Vi)dX%—/S)ag(fzo,vi)dx (2.43)

where f = (V; — v;)%, g = (Vo — v,)? and V; and v, are measured velocities within €; and €,
respectively. However, assuming a priori knowledge about the position of the independently moving
object limits the generality of this method.

2.4.2 Mixed Velocity Distributions

Another strategy for estimating discontinuous optical flow is to make explicit a model for mixed
velocity distributions (usually two) at each image point. A method of estimating discontinuous motion
on a local basis, presented by Schunck [129], uses the optical flow constraint equation (1.3) to compute
several constraint lines in velocity space for small spatial neighbourhoods. Clusters of intersections of
these lines with the constraint line of the central point of the neighbourhood are analyzed to determine
the smallest cluster containing at least half of the intersection points. The middle point of this cluster
thus defines the motion estimate v. If two motion patterns are present within the neighbourhood,
then v is considered as the dominant one. Hence, velocity can be correctly estimated across motion
boundaries (see Figure 2.7). However, neighbourhood sizes must include significant constraint line
variations, as finding intersections of constraint lines may become ill-conditioned otherwise (this is
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Figure 2.7: The constraint line from the central point of the image region being considered intersects
with the constraint lines of neighbouring image points. Clusters of intersections allow the determination
of the dominant velocity pattern [129].

simply another manifestation of the aperture problem). Jepson and Black’s mizture models [77] also
follow this approach, but use a robust estimation framework.

When multiple motions arise within a single image region, a least-squares solution to the optical
flow constraint line clustering problem leads to an average estimate of these multiple motions. Noting
that difficulty, Black [21, 22, 23] reformulates the problem of estimating optical flow by using robust
estimators. This framework consists of the minimization of a functional that expresses the various
assumptions made about image motion:

E(V,\?) = )\DED(V) + AsEs(V) + )\TET(V,V), (244)

where Ep(v) is the optical flow constraint equation, Fg(v) is a spatial coherence constraint (a spatial
smoothness term) and Ep(v,v) is a temporal coherence constraint:

Er(v,v) = pr(v—v,oy) (2.45)
Ep (V) = IOD(VI v+ I, O’d) (246)
Es(v) = Z,OS(V*VLUs)- (2.47)

nef

v is a prediction about v at time ¢t 4+ 1. pp, ps and pr are robust, Lorentzian M-estimators. Their
use is motivated by the fact that the distribution of multiple motions within a single image region
is not Gaussian and to account for events unmodelled by the brightness constancy assumption. The
robustness of these statistical estimators is characterized by their relative insensitivity to deviations
from the assumed statistical model in the set of measurements, allowing the estimation of discontinuous
optical flows (see Figure 2.8).
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Figure 2.8: a) (left): A least-squares fit through a cloud of points. b) (right): A robust fit through the
same cloud of points. The influence function of the Lorentzian probability distribution tends to zero
rapidly for deviations from the mean. These are considered outliers [22].

Multiple patterns of motion within a single image region also arise from partial transparency of
occluding surfaces. Bergen et al. [20] present an algorithm for estimating up to two different motions
within a single intensity neighbourhood. The algorithm uses the following steps: let vi and vs be two
distinct velocities within an arbitrary image region. An iterative process is applied for estimating vy
and warping the corresponding image region on the next two frames to compute two difference images,
Dy and Do, used in turn to estimate vo. If v; is a reasonable estimate of one velocity pattern then
the residual intensity structure in Dy and Ds reflects the velocity vo. The algorithm is iterated until
the estimates v; and vy stabilize. It is generally sufficient to assume v = vo = 0 initially, if no a
priori knowledge is available. A least-squares method is employed for solving v; and vo, using (1.3).

Other approaches for the measurement of multiple motions exist: the distribution of motion pat-
terns may be regarded as a superposition of data distributions. Shizawa and Mase [131] apply a
superposition principle to multiple motions and show that existing algorithms for optical flow, 3-
d motion and structure, etc. can be generalized to handle many motion distributions. Similarly,
multiple motions can be thought of as a set of layers, each describing a particular motion, over a
particular domain. Techniques to separate these layers have been proposed by many authors: Darrell
and Pentland explicitly take the support of homogeneous regions into account by using a multi-layer,
cooperative robust estimation framework. Jespon and Black use an expectation-maximization (EM)
algorithm to group a wide variety of component velocities into a fixed number of layers. Irani et al. [71]
determine a dominant motion in an image using a least-squares approach and then group and segment
the outlying motions. Their approach assumes that there is only one dominant motion and many out-
lying motions, each of which is assumed to correspond to independently moving objects. Adiv [3] uses
a Hough transform on a pre-computed optical flow field to group regions having velocities consistent
with roughly planar surfaces. This grouping is based on finding neighbouring velocities sharing the
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same affine transformations. Negahdaripour and Lee [112] present a segmentation process based on
a hierarchical clustering method that does not assume a pre-computed optical flow field. They fit an
affine model to small regions of the image and then repeatedly merge neighbouring regions based on
similarity of their affine parameters. Then, given two sufficiently large planar regions, a motion and
structure calculation can be performed. Wang and Adelson [152] use a clustering algorithm to group
velocities into layers, each consistent with an affine motion. Bober and Kittler [27] use a block-based
Hough transform in a robust estimation framework (redescending kernels) to obtain robust velocity
estimates, including multiple motions, by clustering coherent motions at the same time the motion
estimation is performed. Two confidence measures based on support functions are also proposed.
In addition, hierarchical frameworks are known to separate motion components with respect to spa-
tiotemporal frequencies. Burt et al. [31] suggest that multiple motions could be handled separately
using different spatiotemporal frequency channels.

2.4.3 Parametric Models

Parametric models generally describe image motion with bivariate polynomials of varying order in the
image coordinates and provide strong constraints on motion, which usually results in the accurate in-
ference of optical flow [26]. These models possess desirable qualities: the motion of large image regions
may be described with a single set of parameters, due to the increased flexibility of representation.
In addition, parametric models are adequate for the description of discontinuous optical flow as each
segmented region may be described with a particular set of motion parameters.

Bergen et al. [20, 19] consider the computation of optical flow from the viewpoint of image
registration: given an image sequence, the parameters that best align an image with the next in the
sequence are to be computed. This framework unifies many of the approaches already surveyed. In
all cases, a function is to be minimized with respect to different parameters modelling velocity. Their
algorithm has four basic components: pyramid construction, motion estimation, image warping and
coarse-to-fine refinement. A Laplacian pyramid is used to hierarchically represent the image data
[30] and motion estimation is performed by SSD minimization with respect to a particular model of
motion. Image warping uses the current parameter values to compute an optical flow field at time ¢
and then reconstructs another image at time ¢ from the image at time £ — 1. Image reconstruction is
performed using bilinear interpolation. The warped image is then compared with the original image
and an error measure, based on image difference, is minimized with the Gauss-Newton method. The
last component is a propagation of motion estimates from one level in the pyramid to the next lower
level where they are used as initial guesses for the iterative refinement.

Using Bergen et al.’s classification, the optical low methods presented above can be thought of
as parametric, quasi-parametric or non-parametric [19, 20]. Parametric models fully describe the
individual motion with a bivariate equation. For example, affine models approximate image velocity
as:

u(z,y) = ai(z,y) + agx + azy
v(z,y) = aa(z,y) + asx + agy (2.48)

which is reasonably valid when surfaces are far from the observer or the image region under analysis
is small. This models optical flow as a superposition of uniform motion and rotation, dilation and
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shear. This is the model used by Fleet and Jepson [47, 46] to integrate component velocities in local
neighbourhoods. Adiv [3] also uses this model to segment and fit velocity measurements to local planar
patches in the first stage of his algorithm. Spetsakis [138] uses an affine flow model and a hierarchy
of Gabor filters. A second model assumes planarity of local surfaces:

u(z,y) = ai(z,y)+ ax + azy + a7x2 + agzy
v(z,y) = as(z,y)+ asz + agy + arzy + agy?, (2.49)

which is the wvelocity functional method of Waxman and Wohn [154] which they extended to include
27 order curved surfaces. In both (2.48) and (2.49) the a;’s are neighbourhood center velocities
or 1¥% and 2™@-order velocity derivatives. These parameters completely describe a planar surface
velocity field. Any constant velocity model, such as Lucas and Kanade’s [94] is also an example of a
parametric model, although very simple. [20, 19]. Usually, the order of a parametric model describes
its applicability for large image regions.

Non-parametric models are those typically used in global optical flow recovery. Horn and Schunck’s
global smoothness [69] or Nagel’s oriented smoothness constraint [107] are examples of non-parametric
models. Quasi-parametric models use a combination of parametric and non-parametric models. Bergen
et al. place rigid motion models in this class. Rigid motion arises from rigidly moving scene objects
under perspective projection. Direct motion and structure methods are examples of this model: Hanna
[60, 61] shows that the rigidity assumption can be used to overcome the aperture problem in most
cases. These parametric models are presented in a unified hierarchical framework [20]. The hierarchy
yields increased computational efficiency and also allows for increased accuracy and robustness via
coarse-to-fine refinements and image warping.

Black and Jepson [26] determine coarse optical flow via a correlation method [25] and fit para-
metric models to segmented regions of the image by hypothesizing local planarity and using coarse
velocities to perform segmentation. Standard area-based regression techniques further refine these mo-
tion estimates. Deviations from planarity are modelled by allowing local deformations in the motion
estimates. Hence, their approach does not try to fit a single parametric model to the whole image,
but many parametric models to individual segmented regions. Also, Haddadi and Kuo [57] propose a
parametric smoothness model that decomposes optical flow into irrotational and solenoidal fields and
imposes a smoothness constraint on each field separately. Parameters are iteratively improved and
smoothing across motion boundaries is avoided.

2.5 Temporal Refinement Methods

Most methods presented above for computing optical flow do not incorporate motion estimates from
previous calculations within an image sequence being acquired: given two or more images, optical flow
is computed only for one of the images. Recently, there has been some interest in incremental com-
putation of optical flow [22, 24, 134, 49, 35]. The advantages include instantaneous access to optimal
velocity estimates, accuracy improvement as the integration of optical flow over time is performed,
computational efficiency gained by updating the estimates with the current frame and the ability to
adapt to discontinuous optical flow as the observer or scene objects abruptly vary their motions.
Black’s [22] algorithm may also be viewed as an incremental model because it minimizes an ob-
jective function that incorporates conservation of image intensity and spatiotemporal coherence in a
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robust estimation framework. Temporal continuity allows prediction of the next image velocity, as-
suming uniform acceleration. Warping with bilinear interpolation is used to estimate the acceleration.
Black and Anandan [24] use a Markov Random field (MRF) method in a reformulation of Black’s
approach. The MRF algorithm is parallel, local and detects occlusion boundaries in an incremental
fashion but, as formulated, can only handle integer motions. Singh [134] uses a Kalman filter to
integrate velocity estimates computed by a hierarchical correlation method [133]. The Kalman filter
reduces the uncertainty of the estimates over time. This framework also detects occlusion boundaries.
Fleet and Langley [48] use low-pass recursive filters to produce and update gradient-based velocity
estimates from a sequence of images. Chin ef al. [35] present an extension of Horn and Schunck’s
dense optical flow algorithm [69] that uses a temporal coherence constraint to produce near optimal,
recursive flow estimates from multiple frames.

3 Discussion

Although many methods and strategies have appeared, the estimation of image motion remains a
challenging task: to date, except in limited circumstances, no technique is able to generate sufficiently
accurate and dense optical flow fields to allow the general recovery of motion and scene parameters in a
realistic environment. In fact, motion and structure algorithms need very accurate optical flow to carry
useful 3-d motion and structure computations [15]. Also needed are accurate means of determining
the reliability of computed image velocities. Such reliability measures have been proposed: covariance
matrix eigenvalues [132, 135], Gaussian curvature [151], principle curvature [8, 64], spatial gradient
[14], eigenvalues of a least-squares matrix [132] and support function values [27]. These confidence
measures allow for thresholding, yielding more accurate but sparser optical flow fields. They may
also be integrated in subsequent processing, such as weights in a least-squares motion and structure
calculation.

Of importance in an accurate estimation of image motion in the surveyed methods is the require-
ment for appropriate spatiotemporal sampling rates, in order to compute accurate spatiotemporal
derivatives for differential-based methods, to reduce the search areas for matching-based methods or
to limit the amount of aliasing when estimating optical flow with frequency-based filtering methods.
Too often, the assumption that imagery is free of aliasing effects is made. Conventional cameras usu-
ally produce imagery with severe temporal aliasing, especially for significant image motions. Reducing
aliasing effects may be accomplished by increasing temporal sampling rates, image prefiltering or by
using hierarchical processing. Of course, increased temporal sampling rates lead to more accurate
optical flow computations. However, for a number of reasons, including small temporal support (only
a few images) or fast image motion, such appropriately sampled imagery is not always available. In
such cases, accurate temporal derivatives may be difficult to obtain and hierarchical matching-based
methods seem to be a natural choice. It has also been observed that some prefiltering of the image
sequence prior to the extraction of basic image motion measurements, such as intensity derivatives or
correlation surfaces, significantly increases the accuracy of results [14]. For instance, a spatiotemporal
Gaussian smoothing of the image sequence results in more accurate derivatives for the methods of Lu-
cas and Kanade [93, 94] and Horn and Schunck [69]. Anandan’s and Singh’s computational schemes
[8, 135] also use prefiltering of the images by computing hierarchical Laplacian images. It is believed
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that this high-pass filtering emphasizes image structures that are desirable for correlation.

Often, very restrictive assumptions about image motion are posed. For example, one of these
assumptions requires neighbouring velocities arising from the relative motion of a single surface to
be similar [69]. This requirement is usually imposed by applying isotropic smoothness constraints
onto velocity estimates. However, only a few simple cases of realistic imagery exhibit continuous
motion fields: realistic imagery, such as outdoor scenes, possess complex structures for which global
single surface assumptions are inadequate. Attempts at estimating discontinuous image motion were
proposed by Corneluis and Kanade [37] and Nagel [105, 107, 109] in the form of an inhibition of
the smoothness requirement across intensity discontinuities. However, it is obvious that intensity
discontinuities may not necessarily represent motion discontinuities [144]. The problem posed by
occluding surfaces needs further investigation. Occlusion is a important source of visual information:
optical flow at occlusion boundaries can be used to determine the direction of translation (the focus
of expansion) [92] and segment the scene into independently moving objects [145], yet optical flow
estimation at occlusions is problematic. Adequate approaches to handling occlusion include line
approaches which explicitly model intensity discontinuities and prevent smoothing over them, layered
or superposed parametric models, and mixed velocity distribution models assume the presence of
usually two velocities and discriminate them according to some criteria. In addition, occlusion has
been recently analytically described in Fourier space [18, 48].

Alternatively, optical flow may be estimated with local constraints only [20, 33, 47, 94, 151]. In
these schemes, no smoothness requirements are imposed and motion discontinuities may be preserved.
Of course, the accuracy at motion boundaries or at regions of transparency highly depends on the
model of motion being used. For instance, single motion models are inadequate for handling occlusion
and transparency properly. Nonetheless, the use of local constraints or parametric models may be
more appropriate in general [14], as no arbitrary smoothness requirement is imposed on the structure
of optical flow.

Lighting effects also constitute a problem in many image sequences. Constant scene illumination
and Lambertian surface reflectance are either implicitly or explicitly assumed for most current opti-
cal flow methods that use the brightness constancy assumption. Although the effects of highlights,
shadows and illumination conditions on the estimation of optical flow have only been studied to a
limited degree, it is possible to partially compensate for these effects and estimate image motion as
a geometric quantity if the characteristics of the light sources are known. Towards this, the use of
multiple light sources [160] and sets of multispectral constraints on image motion [96] have been used.
Shading effects have also been modelled [101].

Aside from lighting conditions, some surface reflectance phenomena also pose difficulties. For ex-
ample, transparent surfaces usually lead to multiple motions while highlights may create false motions.
Perhaps due to its difficulty and infrequency of occurrence, transparent motions have been mainly ig-
nored and attempts at estimating multiple motions have just begun to appear [20, 77]. Methods using
orientation and velocity sensitive filters may contribute to the solving of this particular problem, as
they provide multiple measurements for each location [47]. Alternatively, superposition principles and
layered motions [39, 131, 152] are promising frameworks. However, segmenting multiple motion dis-
tributions remains difficult if no a priori assumption is made on the number of distributions present
within a support region.

Lastly, we would like to emphasize that much of the image motion literature presents flow field
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examples for a few image sequences, which can only be judged qualitatively. While the theory of
optical flow computation is being addressed, the practise of optical flow is often neglected: far too
little of the published work provide quantitative error analysis. Usually, only a qualitative comparison
is possible. Even then, it is often difficult to assess which techniques are quantitatively better as
authors typically use their favorite image sequences, which are not usually available to the community
and for which the correct image motion is unknown. A widely available set of images for comparative
testing is needed. These images should have known optical flow fields and allow a quantitative error
analysis. This is especially the case for the newer work, as with the layered approaches to optical flow,
where little or no quantitative analysis exists.

There are various means of performing quantitative error analysis when correct optical flow infor-
mation is available: error can be expressed as absolute error, relative error, angle error [47], RMS or
SNR ratios, allowing one to compare optical flows for the same image sequence. Furthermore, quan-
titative analysis is possible without motion information: RMS image reconstruction error has been

used to measure error for real image sequences when the correct motion information is unavailable
[40, 85, 95, 163, 104, 114, 163].
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