
1The Computation of Optical FlowS.S. Beauchemin and J.L. Barronbeau@csd.uwo.ca barron@csd.uwo.caDept. of Computer ScienceUniversity of Western OntarioLondon, Ontario, Canada, N6A 5B7AbstractTwo-dimensional image motion is the projection of the three-dimensional motion of objects,relative to a visual sensor, onto its image plane. Sequences of time-ordered images allow theestimation of projected two-dimensional image motion as either instantaneous image velocities ordiscrete image displacements. These are usually called the optical ow �eld or the image velocity�eld. Provided that optical ow is a reliable approximation to two-dimensional image motion, itmay then be used to recover the three-dimensional motion of the visual sensor (to within a scalefactor) and the three-dimensional surface structure (shape or relative depth) through assumptionsconcerning the structure of the optical ow �eld, the three-dimensional environment and the motionof the sensor. Optical ow may also be used to perform motion detection, object segmentation,time-to-collision and focus of expansion calculations, motion compensated encoding and stereodisparity measurement. We investigate the computation of optical ow in this survey: widely knownmethods for estimating optical ow are classi�ed and examined by scrutinizing the hypotheses andassumptions they use. The survey concludes with a discussion of current research issues.
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ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 41 IntroductionA fundamental problem in processing sequences of images is the computation of optical ow, anapproximation to image motion de�ned as the projection of velocities of 3-d surface points ontothe imaging plane of a visual sensor. Optical ow is often a convenient and useful image motionrepresentation. However, there exist other motion descriptors, sometimes more general than opticalow, such as parametric models of motion, or descriptors adapted to restricted contexts, such as whenelements of the geometry of the scene or the motion of the visual sensor are partially or completelypre-determined.The importance of motion in visual processing cannot be understated: approximations to imagemotion may be used to estimate 3-d scene properties and motion parameters from a moving visualsensor [63, 90, 92, 120, 149, 148, 3, 15, 112, 65, 162, 164, 98, 51, 45, 72], to perform motion segmentation[23, 115, 124, 103, 137, 41, 75, 28, 9, 125, 44], to compute the focus of expansion and time-to-collision[123, 117, 140, 74, 142, 29], to perform motion-compensated image encoding [34, 40, 100, 104, 114, 163],to compute stereo disparity [12, 38, 76, 84], to measure blood ow and heart-wall motion in medicalimagery [122] and, recently, to measure minute amounts of growth in corn seedlings [16, 86].1.1 Motion and Structure ParadigmsTraditionally, approximations to image motion have been used to infer egomotion and scene structure.Towards this end, di�erent motion and structure paradigms have been developed, sometimes usingoptical ow as an intermediate representation of motion, correspondences between image features,correlations or properties of intensity structures. These paradigms are generally classi�ed into threemain groups:

Figure 1.1: a) (right): A frame of the Yosemite y-through image sequence generated by Lynn Quamat SRI and b) (left): its optical ow.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 5Velocity Three-dimensional motion and scene structure may be inferred from two-dimensional ve-locity �elds [63, 92, 120] by relating the motion and structure parameters to optical ow. Theseparameters include instantaneous translation and rotation rates and possibly surface parametersor relative depth1.Disparity Image disparities, either established as image feature correspondences or local correlations,may be used to compute three-dimensional translation vectors, rotation matrices and surfaceattributes [90, 149].Intensity Image intensities and their derivatives are sometimes used directly to obtain motion andstructure parameters [6, 7, 70, 111, 66, 165], thus avoiding an explicit intermediate representationof image motion such as optical ow or disparity �elds.Usually, relating image motion estimates or intensity derivatives to three-dimensional motion andstructure parameters results in sets of non-linear equations. In addition, each of these paradigmshas its merits and detractions, depending on the intended use and the characteristics of the imagery.However, their evaluation is beyond the scope of this survey.1.2 Optical FlowThe initial hypothesis in measuring image motion is that the intensity structures of local time-varyingimage regions are approximately constant under motion for at least a short duration [69]. Formally,if I(x; t) is the image intensity function, thenI(x; t) � I(x+ �x; t+ �t); (1.1)where �x is the displacement of the local image region at (x; t) after time �t. Expanding the left-handside of this equation in a Taylor series yieldsI(x; t) = I(x; t) +rI � �x + �tIt +O2; (1.2)where rI = (Ix; Iy) and It are the 1st-order partial derivatives of I(x; t), and O2, the 2nd and higherorder terms, which are assumed negligible. Subtracting I(x; t) on both sides, ignoring O2 and dividingby �t yields rI � v+ It = 0; (1.3)where rI = (Ix; Iy) is the spatial intensity gradient and v = (u; v) is the image velocity2. Equation(1.3) is known as the optical ow constraint equation, and de�nes a single local constraint on imagemotion (see Figure 1.2). However, this constraint is not su�cient to compute both components of v asthe optical ow constraint equation is ill-posed3. That is to say, only v?, the motion component in thedirection of the local gradient of the image intensity function, may be estimated. This phenomenonis known as the aperture problem [150] and only at image locations where there is su�cient intensitystructure (or Gaussian curvature) can the motion be fully estimated with the use of the optical ow1Figure 1.1 shows one frame from the synthetic Yosemite y-through sequence, produced by Lynn Quam at SRI.2The row convention for vectors is used, thus x � y = xyT represents inner product.3The optical ow constraint equation is one linear equation in the two unknowns v = (u; v).
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Figure 1.2: The optical ow constraint equation de�nes a line in velocity space. The normal velocityv? is de�ned as the vector perpendicular to the constraint line, i.e. the velocity with the smallestmagnitude on the optical ow constraint line.constraint equation (see Figure 1.3). For example, the velocity of a surface that is homogeneous orcontaining texture with a single orientation cannot be recovered optically. Since the normal velocityis in the direction of the spatial gradient rI, (1.3) allows one to writev? = �ItrIjjrIjj22 : (1.4)Thus, the measurement of spatiotemporal derivatives allows the recovery of normal image velocity.From this de�nition, it becomes clear that for optical ow to be exactly image motion, a number ofconditions have to be satis�ed. These are: a) uniform illumination; b) lambertian surface reectanceand c) pure translation parallel to the image plane. Realistically, these conditions are never entirelysatis�ed in scenery. Instead, it is assumed that these conditions hold locally in the scene and thereforelocally on the image plane. The degree to which these conditions are satis�ed partly determines theaccuracy with which optical ow approximates image motion. Alternatively, one can measure thedisplacement of small image patches, for example by correlation, in short image sequences (usually2 or 3 frames). Such image displacements constitute a valuable approximation to image velocitywhen certain conditions are met. In particular, the ratio of sensor translational speed to absoluteenvironmental depth, the 3-d vertical and horizontal sensor rotations and the time interval betweenframes must be small quantities [3]. Optical ow may also be computed as the disparity �eld where,given two stereo images or two adjacent images in some sequence, features of interest in the imagesare extracted and matched via a correspondence process.Essentially, performing 2-d motion detection involves the processing of scenes where the sensoris moving within an environment containing both stationary and nonstationary objects. Further-more, visual events such as occlusion, transparent motions and non-rigid objects increase the inherentcomplexity of the measurement of optical ow.
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Figure 1.3: Through apertures 1 and 3, only normal motions of the edges forming the square can beestimated, due to a lack of local structure. Inside aperture 2, at the corner point, the motion can befully measured since there is su�cient local structure; both normal motions are visible.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 81.3 Hierarchical ProcessingTraditionally, optical ow was computed using only one scale of resolution, usually de�ned by thevisual sensor [69], leading to the problem of measuring large image motions. In this case, because oflow sampling rates and aliasing e�ects, (1.3) becomes inappropriate. A general way of circumventingthis problem is to apply optical ow techniques in a hierarchical, coarse-to-�ne framework. Hierarchicalframeworks allow the images to be decomposed in di�erent scales of resolution in the form of Gaussianor Laplacian pyramids [8, 17, 43, 52]. Because of a low frequency representation at coarser resolutions,the optical ow constraint equation becomes applicable in the case of large image motions at the�nest resolution [79]. In addition to handling fast motions, hierarchical processing also o�ers increasedcomputational e�ciency. In such frameworks, velocity or displacement estimates are cascaded througheach resolution level as initial estimates subject to re�nement. At the coarsest level, initial estimatesare computed and then projected onto a �ner level of resolution and re�ned once again. The �nalestimates are obtained when the re�nement reaches the �nest level of resolution (see Figure 1.4).Hierarchical processing is applicable to most optical ow techniques. For example, Glazer [53] adaptedHorn and Schunck's di�erential technique to such a framework, Anandan [8] used a hierarchical area-based correlation method, Heeger [64] proposed a hierarchical energy-based �ltering technique in aGaussian pyramid and Bergen et al. [19, 20] proposed hierarchical parametric models for optical ow.1.4 Problems and IssuesMuch progress has been made in optical ow computation and yet, its accurate estimation remainsdi�cult because of numerous theoretical and practical reasons. Theoretically, we believe that opticalow, as an approximation to image motion, largely determines the lower bound on accuracy. In addi-tion, scene properties such as surface reectance and informative image events such as transparencyand occlusion were, until recently, not adequately dealt with in most models of image motion.Optical ow and image motion The interpretation of intensity variation as pure relative motionis restrictive because velocity is a geometric quantity independent from illumination conditions.Hence, estimating optical ow from intensity variation only approximates image motion. Con-ditions which make optical ow di�erent from image motion include the absence of texture, inwhich case optical ow is null, and when the true motion �eld violates the brightness consistencymodel used for its approximation [68]. Uniform scene illumination and Lambertian surface re-ectance are either explicitly or implicitly assumed in most current optical ow methods whichuse some form of the brightness consistency assumption. Highlights, shadows, variable illumi-nation and surface translucency are phenomena violating the assumption and have only beenstudied to a limited extent [101, 20, 47, 77].Occluding surfaces and independently moving objects The problem posed by occluding sur-faces is currently being addressed by the research community. Occlusion is di�cult to analyze,despite the fact that occlusion constitutes an important source of visual information: opticalow at occlusion boundaries may be used to determine the direction of translation [92] andsegment the scene into independently moving surfaces [3, 145, 152]. Until recently, most optical
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Figure 1.4: The hierarchical computational model. Coarse motion estimates are projected to �nerlevels where they serve as initial estimates subject to re�nement [8].



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 10ow techniques relied on a single-surface hypothesis [69], which is a rare visual event. The di�-culty of handling occlusion lies in the fact that image surfaces may appear or disappear in time,misleading tracking processes and causing numerical artifacts in intensity derivatives.Transparency Transparent motions created by physically translucent surfaces is also found in im-agery. The problem posed by transparent motions is mainly one of handling multiple motiondistributions. Classical approaches to optical ow measurement which use single motion modelsare clearly inadequate [14]. Recently, mixed distributions and superposition principles have beenapplied to transparent motions [20, 77, 131].Practical issues in computing optical ow were addressed in a recent study [14] which analyzed ninetechniques dating from 1981 to 1990 [69, 105, 107, 151, 94, 47, 46, 64, 8, 133, 155] for accuracy, densityand reliability of measurements. To test the implementations of these algorithms, both synthetic andreal data were used. The observed performance of these algorithms lead to the following conclusions:Pre�ltering and di�erentiation Temporal smoothing is required in order to avoid aliasing andnumerical di�erentiation must be done carefully. The often stated requirement that di�erentialmethods require image intensity be nearly linear with motions less than one spatial unit perframe arises from the use of only two frames, poor numerical di�erentiation or input imagerycorrupted by temporal aliasing. With two frames, derivatives are estimated using simple back-ward di�erences which are accurate only when the input is highly oversampled and the intensitystructure is nearly linear. When temporal aliasing cannot be avoided, hierarchical methods,operating in a coarse-to-�ne manner, provide better results.Reliability measures The need for con�dence measures to indicate the reliability of computed ve-locities cannot be understated. These con�dence measures can be used to threshold optical ow�elds or to weight velocities is post-measurement processing (in a motion and structure calcu-lation, for example). Most current di�erential methods do not provide con�dence measures.However, in Barron et al.'s study [14], the smallest eigenvalue of a least-squares matrix [132] wasused successfully. Other possibilities, including the determinant of a Hessian matrix (Gaussiancurvature) [155], the condition number of a solution matrix [47, 151] the magnitude of localimage gradients, the principle curvature values [8] and the eigenvalues of a covariance matrix[135] were examined [14].Accuracy Hierarchical correlation methods constitute robust motion measurement schemes for imagesequences with signi�cant contrast changes or large displacements and severe aliasing4. The testimage sequences used by Barron et al. [14] are all appropriately sampled with small motions(typically between one and four pixels per frame) and were favourable to di�erential approaches.In spite of this, and as opposed to di�erential-based test results, their experiments demonstratethat correlation methods experience di�culty with subpixel motions as their error depends on thecloseness of image motion to an integer number of pixels. Hierarchical di�erential-based methods(using image warping or registration) may provide an alternative to correlation methods.4Dutta et al.'s stop-and-shoot sequences constitute interesting image sequence examples [42].



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 11One of the purposes of this study [14] was to analyze the performance of di�erent optical owmethods and to and to encourage others to compare numerical results with theirs. Towards thisend, several authors now compare the performance of their techniques with those of this study forthe same image sequences [27, 58, 156, 89, 26, 161, 57, 49]. In addition, some experimental workevaluating di�erential techniques has recently appeared [59]. Unfortunately, a quantitative analysisis often impossible for real image data (to obtain the correct optical ow, one needs the 3-d motionparameters as well as the 3-d depth values everywhere). In this case, only a qualitative analysis may beperformed, but it was observed that some optical ow �elds, while being less accurate quantitatively,may appear better qualitatively, such as those obtained with methods incorporating global smoothingconstraints. An obvious way to evaluate optical ow computations and yet avoid a quantitativeanalysis is to use the computed optical ow �eld in a motion and structure calculation and examinethe accuracy of the 3-d motion parameters. DeMicheli et al. [98] used optical ow �elds obtained withthe method of Uras et al. [151] to estimate time-to-collision and angular velocity in a Kalman �lterframework with good accuracy. More recently, Barron and Eagleson [13] have proposed a motion andstructure algorithm to compute general 1st and 2nd-order 3-d motion and structure parameters fromtime varying optical ow, also in a Kalman �lter framework.1.5 Scope and PurposeThere exist numerous computational models for estimating image velocity, which we classify intothe following main groups: intensity-based di�erential methods [92, 69, 94, 147, 43, 53, 52, 106, 107,108, 151, 5, 146, 126, 127, 132, 136, 22, 20, 49], frequency-based �ltering methods [47, 55, 64, 153]and correlation-based methods [8, 12, 78, 83, 130, 133, 143]. In addition, there exist methods for thecomputation of discontinuous or multiple-valued optical ow and techniques for performing temporalre�nements of motion estimates as more information becomes available through the image-acquisitionprocess. These methods are classi�ed into the following groups: multiple motion methods and temporalre�nement methods.Most of these approaches can be understood as being comprised of three conceptual stages ofprocessing: pre�ltering (low-pass or band-pass) in order to extract signal structures of interest andto enhance the signal-to-noise ratio, measurement extraction of the basic image structures, such asspatiotemporal derivatives or local correlation surfaces and measurement integration either by regu-larization, correlation, or a least-squares computation. These approaches are thought to be broadlyequivalent [1, 2] although di�erences in implementation can lead to signi�cant di�erences in perfor-mance. Given this particular classi�cation, this survey covers the optical ow techniques that donot require solving the correspondence problem. Hence, areas which are not covered by this surveyare feature-based matching methods involving the correspondence problem and stereo approaches toimage motion.One of the most fundamental uses for optical ow is the computation of 3-d motion and structure.Typically, these reconstruction algorithms are ill-conditioned5 and the accuracy of optical ow becomesof extreme importance. Achieving more accurate optical ow calculations requires not only carefulattention to details, but also that realistic imaging properties be taken into account. In this survey,we examine both older and newer approaches to optical ow, with particular attention devoted to how5As opposed to the computation of optical ow, which is ill-posed.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 12the newer approaches address the accuracy, density and reliability issues raised by Barron et al. [14].A recent survey [4] shows the current state-of-the-art up to 1988 not only for optical ow algorithms,but also for feature-based motion algorithms that require a solution to the correspondence problemand for motion and structure algorithms based on these two paradigms.2 Optical Flow TechniquesWe survey the following classes of optical ow techniques: a) intensity-based di�erential methods, b)multiconstraint methods, c) frequency-based methods, d) correlation-based methods, e) multiple motionmethods and f) temporal re�nement methods. The boundaries between each class of methods are notalways clear: Weng's method [157] incorporates both phase-based and feature-based matching whileWaxman et al.'s [155] applies a di�erential scheme on time-varying edge maps. We classify the formeras a phase-based method and the latter as a di�erential method. In addition, multiple motion andtemporal re�nement methods for optical ow overlap with other classes. However, their importancedictates that they be covered separately. Following this classi�cation, we describe representativeexamples of the current state-of-the-art work in optical ow measurement.2.1 Di�erential MethodsDi�erential techniques compute image velocity from spatiotemporal derivatives of image intensities.The image domain is therefore assumed to be continuous (or di�erentiable) in space and time. Globaland local 1st and 2nd-order methods based on (1.3) can be used to compute optical ow. Globalmethods use (1.3) and an additional global constraint, usually a smoothness regularization term, tocompute dense optical ows over large image regions6. Local methods use normal velocity informationin local neighbourhoods to perform a least-squares minimization to �nd the best �t for v. The size ofthe neighbourhood for obtaining a velocity estimate determines whether each individual technique islocal or global. A surface or contour model may also be used to intergrate normal velocities into fullvelocity. Occlusion, manifested by discontinuous optical ow, can be analyzed by line processes, mixedvelocity distribution or parametric models. These techniques perform the segmentation of optical owinto regions corresponding to various independently moving objects or surfaces. Large 2-d motionsmay be analyzed in a hierarchical framework, possibly in conjunction with warping methods.2.1.1 Global MethodsOften, an explicit use of (1.3) is made [5, 20, 43, 53, 52, 69, 105, 106, 107, 126, 127] in conjunctionwith a regularization term (usually a smoothness constraint). Combined, they form a functional whichis minimized over the image domain. Regularization by requiring a slowly varying optical ow �eldwas �rst introduced by Horn and Schunck [69] to disambiguate normal measurements and justi�ed bythe claim that neighbouring velocities, if corresponding to the same object surface, should be nearlyidentical. These constraints were used to de�ne an error functional:ZD((rI � v + It)2 + �2 tr((rv)T (rv)))dx (2.5)6Often, the entire image is considered.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 13over a domain of interest D, where v = (u; v). The solution for v is given as a set of Gauss-Seidelequations which are solved iteratively. Uniform illumination (at least locally) in the image domain ofinterest, orthographic projection, and pure translational motion parallel to the scene are conditionsthat must be met for the brightness constancy assumption (dIdt = 0) to be satis�ed. These hypothesesreduce the set of admissible visual events to restricted cases of realistic time-varying imagery andmotivated the investigation of constraints generating more applicable equations. For instance, motionmay cause a change in the density of features in a local image neighbourhood. Schunck [128] accountsfor this by modifying (1.3), using the continuity equation from uid dynamics and transports theoryto obtain: rI � v + I(ux + vy) = �It: (2.6)This equation is equivalent to (1.3) but for an additional term containing ow divergence which ex-presses expansion or compression of an image neighbourhood as it undergoes an a�ne transformation7.Nagel [108] suggests that the optical ow constraint equation should be explicitly based on the geo-metric properties of the 3-d scene and derivesrI � v + It = 4I  ẑ _PTẑPT � P _PTP _PT ! (2.7)where P is a 3-d environmental point, _P is its 3-d velocity and ẑ is a unit vector along the line-of-sightaxis. This equation assumes a known scene geometry. An experimental evaluation of these constraints(equations (1.3), (2.6) and (2.7)) in [159] demonstrates that (1.3) has slightly better accuracy whenapplied to ray-traced synthetic data. Negahdaripour and Yu [113] propose replacing (1.3) with amore general constraint that models a linear transformation over time of the image intensity values.Prince and McVeigh [122] derive the variable brightness optical ow equation for an application usingMR (magnetic resonance) image sequences. This equation accounts for the fact that dIdt 6= 0 in theseimages by modelling intensity changes over time as a function of MR parameters, motion and an initialmagnetically induced tag pattern. Luettgen et al. [95] present a multiscale stochastic algorithm toregularize Horn and Schunck's smoothness constraint. The algorithm is non-iterative and providescon�dence measures (multiscale error covariance statistics) to determine the optimal resolution levelof optical ow �elds. The framework is generalizable to other regularization problems. Mukawa[101] proposed a regularization method to compute optical ow with a global smoothness constraintand other constraints that model both di�use and specular lighting e�ects (via Phong shading) for amoving object in a scene with one light source. The term being regularized isE = XR �u2x + u2y + v2x + v2y�+ �XR (q + Ixu+ Iyv + It)2+ �XR �(qx � cIx)2 + (qy � cIy)2�+ �XR �c2x + c2y� = 0: (2.8)The �rst term incorporates Horn and Schunck's smoothness constraint [69]. The second term is theoptical ow constraint equation with an additional term q that is the di�erence of di�use and specular7An a�ne transformation includes translation, rotation and foreshortening and may be expressed with six parameters:the image velocity and its 1st-order derivatives.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 14luminance over time, as �rst suggested by Cornelius and Kanade [37]. The third and fourth termsexploit a relationship between the spatial derivatives of luminance (qx and qy) and the original imageintensity derivatives: qx = cIx and qy = cIy. c is a function that involves computing the ratios ofdi�use luminance at di�erent times. The fourth term ensures that c varies smoothly. �, � and � aresimply constants weighing the relative importance of each term in the minimization.2.1.2 Local ModelsLocal models of velocity assuming single motion patterns are also common. For example, Lucas andKanade use a local constant model for v [93, 94] which is solved as a weighted least-squares solutionto (1.3). Velocity estimates are computed by minimizingXx2RW 2(x)(rI(x; t) � v + It(x; t))2; (2.9)whereW (x) denotes a window function and R is a spatial neighbourhood. Solutions for v are obtainedin closed form. Modi�cations suggested by Simoncelli et al. [132] allow the use of the eigenvalue ofthe least-squares matrix involved in solving (2.9) as a con�dence measure in subsequent processing.Chu and Delp also use a local least squares approach [36] and solved (1.3) with a total least-squarescalculation that accounts for errors in It and also for independent errors in Ix and Iy8. Weber andMalik [156] also use total least-squares in their multiconstraint approach. Campani and Verri [33] usea local model which assumes 1st-order variation in local motion measurements: an overconstrainedsystem of equations is solved with least-squares to recover velocity and its spatial derivatives. However,these local models tend to react poorly in the presence of multiple motions within the neighbourhoodsover which they operate.The aperture problem may be analytically resolved by di�erentiating the optical ow constraintequations to obtain equations involving 2nd-order intensity derivatives [62, 105, 107, 124, 147, 151].These constraints generally provide two or more equations in the two components of v and, whennonsingular, can be used to obtain full motion estimates. For instance, Uras et al. [151] use theconstraint (rrI)vT = �rIt (2.10)which results in an analytical expression for both components of v at a single image point. Nagel[107] shows that image points with high Gaussian curvature, such as grayvalue corners, allows therecovery of full velocity in closed form9. Both Haralick and Lee [62] and Tretiak and Pastor [147] usea combination of (1.3) and (2.10) to overcome the aperture problem at individual image points andto estimate full velocity.Another local approach, which avoids the need to estimate intensity derivatives altogether, usesthe Gauss divergence theorem to convert the optical ow constraint equation intoZV (Ix + Iy + It)dV = ZS uIdydt+ ZS vIdxdt� ZV I(ux + vy)dxdydt+ ZS Idxdy = 0; (2.11)8Consider �tting a line y = mx+ b to noisy y values. In standard least-squares, this is accomplished by minimizingthe vertical distance of each y value from the �tted line assuming noiseless x values. In total least-squares, it is assumedthat there is noise in both the x and y values and the technique minimizes the perpendicular distance of y values fromthe �tted line [166].9Gaussian curvature may be expressed as det(rrI).



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 15where S and V denote local integration over surfaces and volumes of intensity data [56]. The size ofthe surface and volume neighbourhoods must be su�cient to overcome the aperture problem.2.1.3 Surface ModelsPioneering work by Longuet-Higgins and Prazdny [92] examines the form of the optical ow �eld fora moving monocular observer in a rigid scene. They derive the well known image velocity equation,relating 3-d motion and depth parameters to 2-d image motion (approximated as optical ow). Theyshow that these parameters could be recovered from optical ow and its 1st and 2nd-order derivatives.Longuet Higgins [91] derive the conditions necessary to recover motion and structure from planarsurface motion. It is shown that two planes with distinct surface orientations that are engaged indi�erent 3-d motions may have the same optical ow �eld. Waxman and Wohn [154] describe thedual nature of these motion and structure parameters: one set of parameters can be derived fromthe other. Subbarao and Waxman [141] demonstrate that these solutions are unique over time. Horn[68] proves that multiple interpretations of a single optical ow �eld generated by arbitrarily shapedsurfaces occur only rarely.A number of planar motion techniques rely on normal velocity being available10. Waxman andWohn's Velocity Functional method [154] assumes that a velocity at a point on a curved surface canbe approximated by a 2nd-order Taylor series expansion about that point. For velocity v = (u; v), oneobtains v(x; y) = v(0; 0) + @v@x + @v@y + 12 @2v@x2 + @2v@x@y + 12 @2v@y2 : (2.12)Using the normal velocity constraint equation, vn = v � n, a linear equation in twelve unknowns, thetwo components of v and their 1st and 2nd-order derivatives, is obtained. Given twelve or more normalvelocities in a local neighbourhood on the curved surface, these parameters can be recovered. In theevent that the local surface is planar, then@2v@x2 = (2 @2v@x@y ; 0) and @2v@y2 = (0; 2 @2u@x@y ) ; (2.13)allowing (2.12) to be written as one equation in eight unknowns. Hence, only eight normal velocitiesare required to recover the velocity of a planar surface.Murray and Buxton [102] derive a relation between normal velocity parameters of a planar surface,leading to a linear equation of the form jjv?jj22 = c � p; (2.14)where vectors c and p contain expressions for image coordinates of normal velocity, the 3-d motionparameters and the planar surface normal. Given eight normal velocities, the components of p can bedetermined and full velocity is obtained as:v = (p1x+ p2y � p3f + p7x2f + p8xyf ; p4x+ p5y � p6f + p7xyf + p8 y2f ): (2.15)10The measurement of 1st-order spatiotemporal intensity derivatives allows the computation of normal velocity.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 16Further mathematical manipulation of p yields equations for the recovery of 3-d motion parametersand surface orientation. If the aperture problem cannot be overcome for some image locations in aneighbourhood, but that surface parameters can be estimated, then, because of the use of a surfacemodel, an image velocity for each of these locations may be inferred.2.1.4 Contour ModelsMany di�erential approaches to image motion estimation rely on the presence of contours or edgesin image sequences [32, 41, 67, 118, 155]. The computational stages of these methods consist of theextraction of relevant image contours with pre�ltering techniques followed by a di�erential estimationof image motion. Essentially, contours or edges exhibit strong signal-to-noise ratios which facilitatetheir extraction. In addition, it is a common belief that they correspond to signi�cant image structures,although this claim cannot be supported in any rigorous sense [46]. In addition, computing opticalow at edges often leads to sparse ow �elds (usually, 10% of the �eld or less, depending on the densityof edges).Hildreth [67] proposes a smoothness constraint to be applied to normal velocity estimates alongcontours extracted from time-varying images. For a contour S, the normal velocity estimates shouldminimize Z @v@S dS: (2.16)If at least two normal velocity estimates along S are di�erent, then the minimization of the aboveintegral yields a unique velocity �eld at contour S (see Figure 2.5). In practice, the functionalZ �@v@S�2 + �(v � n̂� kv?k2)2dS; (2.17)where n̂ is a unit vector in the direction of v?, is minimized along contours. � is a weighting factorand (v � n̂ � kv?k2)2 expresses the squared di�erence between estimated normal velocity and thatpredicted by the solution. Gong and Brady formulate a similar constraint to be minimized whichincludes a least-squares di�erence term for tangential velocity [54]:Z �@v@S�2 + �(v � n̂� kv?k2)2dS + �(v � t̂� kvkk2)2dS; (2.18)where t is a unit vector perpendicular to n and � is a scalar expressing the con�dence associatedwith the tangential component of v, proportional to the determinant of the Hessian matrix of theunderlying intensity structure. They demonstrate that the tangential component of v can be reliablyestimated wherever the determinant of the Hessian is non-zero.Buxton and Buxton's method [32] for estimating optical ow is based on a model of the motion ofedges in image sequences. They note that the signal-to-noise ratio is enhanced at locations of signi�cantimage features such as edges. Their approach, guided by psychophysical evidence of spatiotemporal�ltering in human early visual processes, is a direct extension of the Marr and Hildreth centre-surroundedge detection operator [97]. They compute spatiotemporal zero-crossings by convolvingS(x; t) = �  r2 + 1u2 @2@t2!G(x; t)! (2.19)
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Figure 2.5: If at least two normal ow estimates along a contour are di�erent, then the full velocityof the contour can be uniquely determined.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 18with an image sequence, where the �rst term is the d'Alembert operator and the second term is aGaussian function, given by G(x; t) = u���� 32 e��(kxk22+u2t2); (2.20)where the parameters � and u control the spread of the envelope. Normal velocities can then beestimated at zero-crossings by computing the partial 1st-order derivatives of S(x; t) asv? = StrSkrSk22 (2.21)with a least-squares calculation. The choice for the values of the parameters � and u is made a priorisince the distribution of edges in the image is unknown.Duncan and Chou de�ne a temporal edge detector which minimizes the e�ects of temporal vari-ations in illumination [41]. The edge detector is the 2nd-order temporal derivative of a Gaussianfunction: St(x; t) = @2G(t)@t2 = �2s3p� (1� 2s2t2)e�s2t2 (2.22)which is convolved in time with the image sequence to produce a set of zero-crossings induced bymoving edges. The authors theoretically and experimentally show that variance in illumination doesnot create zero-crossings in St(x; t). Central di�erences are used to estimate the 1st-order derivativesof St in local neighbourhoods. Normal velocities are computed asrSt � v? � @St@t = 0 (2.23)which is equivalent to the usual optical ow constraint equation. Lines de�ned by v? are thenintersected in local image regions to obtain full velocity estimates. Successful experiments are presentedwith synthetic images containing signi�cant illumination variations.Waxman et al. [155] apply spatiotemporal �lters to edge maps in order to measure velocity atedges extracted with DOG zero-crossings [97]. Given a binary edge map E(x; t), an activation pro�leA(x; t) is created by smoothing the edge map with a spatiotemporal Gaussian �lter:A(x; t) = G(x; t; �x; �y; �t) � E(x; t) (2.24)to which a di�erential method is applied. At edge locations, where the Gaussian pro�les are centered,the spatial gradient of A should be zero, and therefore a 2nd-order approach is adopted. The velocityestimates are given by v =  AxtAyy �AytAxyAxxAyy �A2xy ; AytAxx �AxtAxyAxxAyy �A2xy ! ; (2.25)where derivatives of A are computed by convolving the appropriate Gaussian derivative kernels withthe edge maps.A di�erent method for tracking edges via zero-crossings is to use a radial con�guration of DOGoperators. Perrone [118] presents such a model to measure normal velocities of moving edges. In theradial con�guration, temporal di�erences in the responses of the operators provide su�cient infor-mation towards determining normal velocity. A constant model can then be applied to the normalvelocity distributions to obtain full velocity.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 192.1.5 Multiconstraint MethodsMulticonstraint methods use multiple instances of (1.3) or (2.10) to provide unambiguous expressionsfor image motion at single image points [160, 89, 139, 136, 156, 99, 146]. Liu et al. [89] use equations(1.3) and (2.10): they expand the spatiotemporal image with Hermite polynomials and solve for vusing standard least-squares. Residual of �t, condition number and determinant of the least-squaresmatrix act as con�dence measures on the �nal optical ow �eld. Overconstrained systems of equationscan also be obtained with multiple light sources [160] or by using images acquired with visual sensorstuned to di�erent regions of the light spectrum. Spectral images include those in the visible (3 colourplanes) and infrared spectrum. Markandey and Flinchbaugh show that their multispectral approachproduced similar accuracy to Horn and Schunck's algorithm [69] for synthetic image data and anoutdoor scene [96].Functions other than (or coupled with) intensity may be substituted in the optical ow constraintequation to obtain overconstrained systems. These functions can be thought of as the output ofoperations applied to the image intensities. For example, responses of pairs of linearly independent�lters can be used jointly with the optical ow constraint equation for this purpose [139, 136, 156].Mitiche et al. [99] use an overconstrained system of equations constructed from the optical owconstraint equation for the same point in a number of di�erent images, derived from the originalone, generated by applying functions to compute local values for contrast, average, variance, entropy,median and power content. Srinivasan proposed a similar approach, using an overconstrained systemof equations derived from images that are generated by applying six specialized spatiotemporal �lterson the original images [139]. However, the aperture problem still cannot be resolved when facingsingularities in overconstrained system of equations: these occur for particular intensity structures,including uniform intensity regions, highly structured or periodic textures, etc.2.1.6 Hierarchical ApproachesDi�erential optical ow methods also exhibit problems with large 2-d motions, due to low samplingrates, thus violating the Shannon sampling theorem. Applying di�erential methods in a coarse-to-�ne manner alleviates such problems. Image warping may be used to keep the images su�cientlywell registered at the scale of interest so that numerical di�erentiation can be performed. Bergen etal.'s hierarchical framework [20] uni�es several di�erent model-based optical ow methods. Using aparametric model based on a�ne transformations, scene rigidity, surface planarity or general motionin an image region allows one to both judge the quality of the �t to the data (perhaps splitting theregion if necessary) and to �ll in sparse optical ow �elds with the computed parameters.Di�erential-based hierarchical frameworks are proposed by Glazer, Enkelmann and Battiti et al.[17, 43, 52, 53]. In addition, Bergen et al. have shown that many models of motion could be expressedwithin a hierarchical framework [19]. Adaptive hierarchical methods with respect to scale have alsoappeared [17, 81, 158, 95].2.2 Frequency-Based MethodsA second class of optical ow techniques are based on the use of velocity-tuned �lters. These techniquesuse orientation sensitive �lters in the Fourier domain of time-varying images [1, 47, 55, 64, 153].



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 20Among advantages brought by these methods, it is found that motion-sensitive mechanisms operatingon spatiotemporally oriented energy in Fourier space can estimate motion in image signals for whichmatching approaches would fail. For example, the motion of random dot patterns may be di�cultto capture with feature-based or correlation-based methods whereas, in Fourier space, the resultingoriented energy may be more readily extracted to compute motion [1].The Fourier transform of a translating 2-d intensity signal speci�ed in (1.1) isÎ(k; !) = Î0(k)�(vT k+ !); (2.26)where Î0(k) is the Fourier transform of I(x; 0) and x denotes spatial position. � is a Dirac deltafunction and k; ! denote spatiotemporal frequency. This yields the optical ow constraint equationin frequency space: vTk+ ! = 0; (2.27)which shows that the velocity of a translating 2-d pattern is a function of its spatiotemporal frequencyand forms a plane through the origin of the Fourier space.2.2.1 Orientation Selective FilteringAdelson and Bergen [1] propose a class of computational schemes which exploits the fact that detectingimage motion is equivalent to extracting spatiotemporal orientation. Gabor �ltering is presented as atechnique for extracting spatiotemporal energy. A Gabor �lter is a Gaussian function multiplied by asine or cosine wave. For example, the functionG(x; t) = 1(2�) 32�x�y�t e�� x22�2x+ y22�2y+ t22�2t � sin(2�(x � k+ !t)) (2.28)is a 3-d sine (odd) Gabor �lter, where (k; !) is the central frequency at which response amplitudepeaks. Adelson and Bergen note that the response pattern of such �lters is a�ected by the contrastof the signal: stimuli with low contrast generate low response amplitudes and vice versa. Since themeasurement of velocity is independent of contrast amplitudes, it is suggested that one uses ratios ofresponses from di�erent �lters for the extraction of velocity estimates.J�ahne [73] demonstrates that detection of spatiotemporal orientation is analogous to eigenvalueanalysis of inertia tensor. For instance, a point at the origin of Fourier space corresponds to a region ofconstant intensity and corresponds to null eigenvalues in tensor space. Also, a line in frequency spaceis a spatially oriented pattern moving with constant velocity and its normal velocity can be obtainedwith the eigenvector corresponding to the null eigenvalue. Finally, a plane through the origin expressesa spatially distributed pattern moving with constant velocity and the eigenvector associated with themaximum eigenvalue of the inertia tensor gives the full velocity of the pattern. Hence, J�ahne [73]suggests the use of inertia tensor analysis for detecting spatiotemporal orientation and to avoid thecomputational expense arising from the large number of �lters involved in both Heeger's and Fleet andJepson's methods [47, 64]. However, this algorithm was only tested on simulated image data. Barmanet al.'s work [11] is similar to J�ahne's, as they use spatiotemporal �ltering to recover both velocity(and depth-scaled disparity in the case of motion stereo) and acceleration. A tensor is computed



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 21from the response of six or more quadrature �lters, evenly spread in one half of the Fourier space.Eigenvalues and eigenvectors of the tensor allow one to determine which of several formulae can beused to compute full or normal velocity, if possible. Acceleration may also be recovered as curvatureof the spatiotemporal surface in frequency space [10].Often, these frequency-based velocity techniques are presented as biological models of human mo-tion sensing: Watson and Ahumada [153] have de�ned an orientation-selective mechanism which agreeswith psychophysical measurements of human motion sensing. Their mechanism uses a combination of2-d spatial Gabor functions and 1-d temporal �lters tuned to several orientations for the estimationof local image velocity. The integration of the responses of these sensors discriminates local measure-ments as each sensor within a directional group provides a linearly independent component of thevelocity vector. Grzywacz and Yuille also propose a frequency-based model of visual motion sensing[55]. Their model uses 3-d orientation-selective Gabor �lters to measure motion energy in frequencyspace. Estimates of velocity are also obtained by integrating the responses of populations of �lters ona local basis.2.2.2 Phase-Based FilteringThe method developed by Fleet and Jepson [47] de�nes component velocity in terms of the instanta-neous motion of level phase contours in the output of band-pass velocity-tuned Gabor �lters11. These�lters are used to decompose the input signal according to scale, speed and orientation. Each �lteroutput is complex-valued and can be expressed asR(x; t) = �(x; t)ei�(x;t); (2.29)where �(x; t) and �(x; t) are the amplitude and phase part of the output signal. The component 2-dvelocity in the direction normal to level phase contours is given byv? = ��t(x; t)r�(x; t)kr�(x; t)k22 : (2.30)�t(x; t) is the temporal derivative of the phase and r�(x; t) is its spatial gradient. Phase derivativesare computed using the identity r�(x; t) = Im[R�(x; t)rR(x; t)]jR(x; t)j2 ; (2.31)where R� is the complex conjugate of R(x; t), rR(x; t) is the gradient of R(x; t) and Im denotes theimaginary part of a complex number. Fleet and Jepson relate velocity to local phase informationbecause of the relative insensitivity of the phase signal to amplitude variations due to changes inscene illumination. These distortions are often a consequence of the geometry of perspective projec-tion. Component velocity can be obtained from the output of each velocity-tuned channel on thecondition that the phase signal is stable. Usually, instabilities are associated with neighbourhoodsabout phase singularities which may be detected with a constraint stating that the distance between11The term component velocity is used to denote the velocity normal to local phase structure while normal velocitydenotes velocity normal to local intensity structure.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 22the instantaneous frequency and the peak tuning frequency of the �lter should be minimal. Such aconstraint, when met, is su�cient to avoid velocity estimation at phase singularities. Because eachchannel is considered independently, there may be multiple measurements at a single image location.Then, if there is a su�cient number of estimates, full velocity is recovered at a single point or in asmall neighbourhood by solving a linear system of equations relating the measurements to an a�nemodel of optical ow. As currently formulated, Fleet and Jepson's method does not provide con�dencemeasures. There is also a requirement for a large number of �lters to cover frequency space. It is alsoimportant to note that local phase information is also used in stereopsis for the measurement of imagedisparities by Jenkin et al. [76] and Langley et al. [84]. Weng [157] demonstrates that the phasepart of a signal in a particular frequency channel provides su�cient information to reconstruct thesignal within a multiplicative constant. Windowed Fourier phase is used as the correlation primitivein Weng's matching algorithm.Phase is more robust than either intensity derivatives or energy-based �lter responses for varyingscene illumination. This can be seen intuitively by considering a signal of the form A cos(!t + �).Changing the amplitude, A, of the signal will change its derivative values or the response of an energybased (amplitude-squared) �lter but will have little e�ect on the phase of the signal or its derivatives.Phase-based methods will also respond to the component velocities of multiple motions due to occlusionor transparency, although a suitable measurement integration method, such as a mixed velocity model,is required to cluster them into the correct full velocities. Typically, frequency-based methods do notprovide a means of assigning con�dence to the computed velocities. Thresholds may be provided[47, 64] but their use is binary: either a velocity is found at an image location or one is not.2.2.3 Hierarchical ApproachesHeeger presents a computational model for the estimation of image velocity which uses quadraturepairs of spatiotemporal Gabor �lters [64]. A family of Gabor-energy �lters, tuned to the same spatialfrequency band, but to di�erent spatial orientations is de�ned. The magnitude of the spatial frequencytuning is therefore invariant and other sets of �lters can be designed for di�erent frequency channels.However, a single set of such �lters can be cascaded through a Gaussian pyramid in order to coverdi�erent channels. For a translating 2-d pattern, the responses of these �lters are concentrated abouta plane in frequency space. Parseval's theorem is used to derive the expected responses Ri(v) of theGabor-energy �lters for a translating stimulus:Ri(v) = e�4�2�2x�2y�2tHi(v;ki;!i) (2.32)where Hi(v;ki; !i) = v � ki + !i(u�x�t)2 + (v�y�t)2 + (�x�y)2 :The variables �x, �y and �t are the standard deviations of the Gabor �lters. If mi is the measuredenergy for �lter i and �mi and �Ri are the sums of mi and Ri which belong to the set of �lters Mihaving the same spatial orientation as the ith �lter:�mi = Xj2Mimj



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 23�Ri = Xj2MiRj(v);then a non-linear least-squares solution for v which minimizes the di�erence between the predictedand measured energies, f(v) = nXi=1�mi � �miRi(v)�Ri(v)�2 ; (2.33)should yield the correct estimate for v. Certainty measures for velocity estimates are expressed asconditional probability densities. A computationally e�cient method of convolving Gabor �lters,exploiting their separability properties, is also presented by Heeger.2.3 Correlation-Based MethodsNumerical di�erentiation is sometimes impractical because of small temporal support (only a fewframes) or poor signal-to-noise ratio [14]. In these cases, di�erential or frequency approaches may notbe appropriate and it is natural to consider matching methods.2.3.1 Correlation-Based MatchingTypically, good, matchable features, such as corner points, are sparse while poor, easily mismatchedfeatures, such as edges, are denser. Even when reasonably unique features are available, establishingthe correct correspondences can be problematic. Also further complicating matters is occlusion offeatures that may lead to matching errors.Correlation-based matching approaches are less sensitive to these problems: they do not rely onthe presence of signi�cant image features and variable correlation window sizes can be used nearocclusion boundaries to handle multiple motions [87]. These approaches de�ne displacement (whichis an approximation to velocity) as a shift that yields the best �t between contiguous time-varyingimage regions. Most of these approaches originate from computational stereopsis, where the task is tocorrelate image regions of a pair of images taken from di�erent viewing positions, under perspectiveprojection. It is assumed that, at least locally, distortions caused by the shift in the viewing angleare negligible [76]. Matching image regions often amounts to maximizing a similarity measure. Inparticular, a correlation coe�cient between two functions f and g is de�ned as the integral of theirproduct: ZD f(x+ �x)g(x)dx:Finding �x which maximizes this integral amounts to �nding the shift between f and g, if f(x+�x) =g(x).Kories and Zimmerman use a monotonicity operator for matching image regions in adjacent images[83]. The operator is a 3� 3 window in which the central grayvalue is compared with its neighboursand classi�ed according to the number of grayvalues that have a lower value than the central one. Thematching process proceeds by �rst merging adjacent grayvalues sharing the same class. The centroidsof grayvalue regions sharing the same classi�cation are then tracked with a simple correlation algorithmto establish disparity estimates.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 24Sutton et al. [143] proposed a correlation method which allows linear deformations of small imageregions. A bilinear reconstruction of the intensity surface is computed for local image regions 
i. Theshift of such an intensity surface under linear deformation is expressed asx0
i = x
i + d
i +rd
i (2.34)where x0
i is the position of the deformed neighbourhood 
i, rd
i are the deformation parametersand d is the shift of 
i in time. A correlation coe�cientC(d
i;rd
i) = ZD(
i � 
0i)2dx (2.35)which describes the squared di�erences of neighbourhoods 
i and 
0i, is minimized by a search in themotion domain for values of d
i and rd
i. The estimates for these six parameters must be obtainediteratively, as no closed form solution for C is presented.A region matching method that allows a�ne deformations of intensity is presented by Kalivas andSawchuk [78]. An objective function that is de�ned in terms of a displacement �eld undergoing ana�ne transformation is minimized over the entire image.In order to avoid the computational expense of iterative minimizations of functionals, Little et al.[88] suggest that the use of partially overlapping regions for matching is su�cient to approximate anisotropic smoothness term imposed on disparity estimates. Their approximation of the functionalZD(�(I(x; t); I(x + �tv; t + �t)) + �(rvrvT ))dx (2.36)where � is a correlation operator, is shown to be correct as the extent of the matching region becomeslarger.2.3.2 Hierarchical ApproachesIn the presence of large disparities, non-hierarchical correlation algorithms become sensitive to falsematches, due to the increase in search spaces required to handle the faster motion. In addition, thecorrelation of image areas is, in general, computationally intensive. In order to reduce the amount ofcomputations and the potential for mismatches, one may use coarse estimates of motion to direct thematching process. Ogata and Sato's algorithm [115] provides the correlation computation with coarseestimates of motion obtained from velocity-tuned Gabor �lters. These estimates can then be used torestrict the sizes of search areas and thereby reduce the number of computations usually necessary toobtain disparities.The size of correlation windows is an important parameter for region matching. For instance, withina correlation window, there must be enough variation in the signal to reliably determine disparity.However, the variation of disparity within the same window must remain negligible as local matchesoperate under the hypothesis of a constant velocity model. The optimal window size then dependson the structure of the underlying signal. Okutomi and Kanade [116] propose a statistical modelof disparity within correlation windows which assumes that disparity values are constant but exhibitincreasing uncertainty as they are farther from the central point of the window. This model establishes



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 25a relation between the window size and the uncertainty of disparity. This relation allows one tominimize the uncertainty of the measurements by adjusting the size of the correlation window.Hierarchical matching techniques can improve the accuracy of the disparities by operating onseveral frequency channels extracted from the images to be processed. Low frequency channels areused to estimate large disparities which can be re�ned by adding higher frequency channels intothe matching process. Anandan's method [8] is based on a Laplacian pyramid and a coarse-to-�neSSD-based matching strategy. The Laplacian pyramid allows for the estimation of large inter-framedisparities and helps to enhance image structure, such as edges, that is thought to be important formatching (see Figures 1.4 and 2.6). The SSD (sum of squared di�erence) measure is de�ned asS(x;d) = nXj=�n nXi=�nW (i; j)(I(x + (i; j); t) � I(x+ (i; j); t + 1))2 (2.37)where W (i; j) denotes a weighting function and d is restricted to the square neighbourhood of size(2n+1)2 centered at x. At the coarsest level, the correct displacements are assumed to be one spatialunit per frame or less. SSD minima are �rst located to integer accuracy within small image regions.Subpixel dispacements are then computed by �nding the minimum of a quadratic approximation tothe SSD surface about the integer location which best minimizes S(x;d). Con�dence measures arederived from the principal curvatures of the SSD surface and used as weights in the functionalZD tr((rd)T (rd)) + cmax(d � êmax � d0 � êmax)2 + cmin(d � êmin � d0 � êmin)2dx (2.38)which is to be minimized over the entire image velocity domain D. êmax and êmin are the normalizedprincipal directions of maximum and minimum curvature. d0 denotes the displacements obtained bythe minimization of S(x;d) in the laplacian pyramid (usually, three levels are used). At the coarsestlevel, where the largest motion is less than one spatial unit per frame, SSD minima are located tosubpixel accuracy by �nding the minimum of the SSD correlation surface and smoothed using iterativeequations based on (2.38). Then, using an overlapped projection scheme, these displacements areprojected to the next level in the pyramid. Matching and smoothing are performed in this manner ateach level in the pyramid from the coarsest level down to the �nest level, the original image, yieldingthe �nal optical ow �eld.Singh's approach [135] is similar to Anandan's method [8] as it also uses SSD minimizations and atwo-stage computation. The �rst stage consists of the computation of SSD values with three adjacenthigh-pass �ltered images I�1, I0 and I1. The three-frame SSD surface is computed asS(x;d) = S0;1(x;d) + S0;�1(x;�d): (2.39)The surface S is then converted into a probability distribution, de�ned asRc(d) = e�kS(x;d); (2.40)where k = ln(0:95)min(S(x;d)) :
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Figure 2.6: Hierarchical image decomposition: the original images are decomposed in a hierarchicalset of frequency channels prior to optic ow estimation.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 27Velocity estimates dc are obtained by computing the weighted average using the Rc(d) values for agiven image area. Covariance matrices Sc associated with disparities dc are also computed.The second step of Singh's algorithm propagates velocity using a neighbourhood smoothness con-straint. Again, a weighted average approach is used in computing da, an average of dc over smallimage regions. dc and da are then used to create a covariance matrix Sn. The correct disparity �eldminimizes the functionalZD(d� da)S�1n (d� da)T + (d� dc)S�1c (d� dc)Tdx; (2.41)which expresses the requirement of a smoothly varying disparity �eld across D. The eigenvalues �1and �2 of matrix [Sn+Sc]�1 act as con�dence measures for the estimates. Singh recommends the useof a Laplacian pyramid with a coarse-to-�ne strategy as in [8] to estimate larger velocities. In addition,Sing's framework was extended with a Kalman �lter approach in order to record motion estimatesalong with their con�dence measures and to integrate new measurements with existing estimates [134].2.4 Multiple Motion MethodsMany phenomena can cause multiple image motions. Among them, occlusion and transparency areimportant in terms of their occurrence and signi�cance in realistic imagery. In addition, their infor-mation content is useful to later stages of processing, such as motion segmentation and 3-d surfacereconstruction. Occlusion boundaries are described by the partial occlusion of a surface by another,while transparency is de�ned as occlusion of a surface by translucent material. In realistic imagery,one �nds occlusion to be the most frequent cause of discontinuous motion12.Among the limitations inherent to gradient-based methods, the requirement of di�erentiable in-tensity structures throughout the image domain is perhaps the most restrictive. At motion disconti-nuities where most of the information resides, the use of (1.3) becomes problematic, since the intensityderivatives theoretically do not exist. In addition, typical correlation-based techniques are sensitiveto occlusion as image structures near occlusion boundaries may appear or disappear in time, possiblyleading to mismatches. Furthermore, local optical ow constraints such as (1.3) and local correlationmethods are often coupled with global requirements which impose a spatial continuity on optical ow.It is obvious that such isotropic requirements cannot be satis�ed in general, as imagery often containsmotion discontinuities.2.4.1 Line ProcessesOther functionals, that attempt to estimate discontinuous motion, have been developed. One strategyto handle occlusion involves using binary line processes [50] that explicitly model intensity disconti-nuities. Koch et al. [82] relax the imposition of a smoothness constraint at those pixels having a largespatial gradient. This prevents smoothing over discontinuities and assumes that motion discontinuitiesoccur in the same location as intensity discontinuities [119]. Black [22] also shows how line processescould be used in a robust (Kalman �lter-like) framework.12Prazdny [121] was one of the �rst to explicitly allow for disparity discontinuities locally in two stereo images.



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 28The non-binary inhibition of smoothness across intensity contours, was proposed by Nagel [105,106, 107, 110]. This approach is based on the minimization of the functionalZD(rI � v + It)2 + �2 tr((rv)TW (rv)))dx (2.42)where W = 1krIk22 + 2�  Iy2 + � �IxIy�IxIy Ix2 + � ! ;in which the quantity (uxIy � uyIx)2 + (vxIy � vyIx)2, representing the spatial variation of v in thedirection perpendicular to the image gradient, is minimized across intensity contours. This functionalis known as the oriented smoothness constraint. The minimization procedure can be implementedusing �nite di�erences [14] or �nite elements [80, 126]. This oriented smoothness approach has beenrecently extended into the temporal domain [109]. A similar method using an intensity-weightedsmoothing procedure is presented by Aisbett [5]. This approach is characterized by the inhibition of anisotropic smoothness constraint for image regions containing signi�cant intensity variations. Contraryto Nagel's method [107], the inhibition of the smoothness constraint is not directional. In addition,the image intensities are assumed di�erentiable and the domain of application of the algorithm isexplicitly restricted to images which satisfy this requirement.Closed curves may also be used to separate image regions exhibiting di�erent velocities. Schn�orr[127] proposes a method which consists of de�ning such a curve, delimiting an arbitrary area aroundthe region where the existence of an independently moving object is assumed, thus creating twodomains 
i and 
o. Given two velocity �elds vi and vo, the closed curve de�ning the two domains isiteratively re�ned by minimizing the functionalZ
i f(v̂i;vi)dx+ Z
o g(v̂o;vi)dx (2.43)where f = (v̂i � vi)2, g = (v̂o � vo)2 and v̂i and v̂o are measured velocities within 
i and 
orespectively. However, assuming a priori knowledge about the position of the independently movingobject limits the generality of this method.2.4.2 Mixed Velocity DistributionsAnother strategy for estimating discontinuous optical ow is to make explicit a model for mixedvelocity distributions (usually two) at each image point. A method of estimating discontinuous motionon a local basis, presented by Schunck [129], uses the optical ow constraint equation (1.3) to computeseveral constraint lines in velocity space for small spatial neighbourhoods. Clusters of intersections ofthese lines with the constraint line of the central point of the neighbourhood are analyzed to determinethe smallest cluster containing at least half of the intersection points. The middle point of this clusterthus de�nes the motion estimate v. If two motion patterns are present within the neighbourhood,then v is considered as the dominant one. Hence, velocity can be correctly estimated across motionboundaries (see Figure 2.7). However, neighbourhood sizes must include signi�cant constraint linevariations, as �nding intersections of constraint lines may become ill-conditioned otherwise (this is
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uFigure 2.7: The constraint line from the central point of the image region being considered intersectswith the constraint lines of neighbouring image points. Clusters of intersections allow the determinationof the dominant velocity pattern [129].simply another manifestation of the aperture problem). Jepson and Black's mixture models [77] alsofollow this approach, but use a robust estimation framework.When multiple motions arise within a single image region, a least-squares solution to the opticalow constraint line clustering problem leads to an average estimate of these multiple motions. Notingthat di�culty, Black [21, 22, 23] reformulates the problem of estimating optical ow by using robustestimators. This framework consists of the minimization of a functional that expresses the variousassumptions made about image motion:E(v; �v) = �DED(v) + �SES(v) + �TET (v; �v); (2.44)where ED(v) is the optical ow constraint equation, ES(v) is a spatial coherence constraint (a spatialsmoothness term) and ET (v; �v) is a temporal coherence constraint:ET (v; �v) = �T (v � �v; �t) (2.45)ED(v) = �D(rI � v + It; �d) (2.46)ES(v) = Xn2
 �S(v � v?; �s): (2.47)�v is a prediction about v at time t + 1. �D, �S and �T are robust, Lorentzian M -estimators. Theiruse is motivated by the fact that the distribution of multiple motions within a single image regionis not Gaussian and to account for events unmodelled by the brightness constancy assumption. Therobustness of these statistical estimators is characterized by their relative insensitivity to deviationsfrom the assumed statistical model in the set of measurements, allowing the estimation of discontinuousoptical ows (see Figure 2.8).
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Figure 2.8: a) (left): A least-squares �t through a cloud of points. b) (right): A robust �t through thesame cloud of points. The inuence function of the Lorentzian probability distribution tends to zerorapidly for deviations from the mean. These are considered outliers [22].Multiple patterns of motion within a single image region also arise from partial transparency ofoccluding surfaces. Bergen et al. [20] present an algorithm for estimating up to two di�erent motionswithin a single intensity neighbourhood. The algorithm uses the following steps: let v1 and v2 be twodistinct velocities within an arbitrary image region. An iterative process is applied for estimating v1and warping the corresponding image region on the next two frames to compute two di�erence images,D1 and D2, used in turn to estimate v2. If v1 is a reasonable estimate of one velocity pattern thenthe residual intensity structure in D1 and D2 reects the velocity v2. The algorithm is iterated untilthe estimates v1 and v2 stabilize. It is generally su�cient to assume v1 = v2 = 0 initially, if no apriori knowledge is available. A least-squares method is employed for solving v1 and v2, using (1.3).Other approaches for the measurement of multiple motions exist: the distribution of motion pat-terns may be regarded as a superposition of data distributions. Shizawa and Mase [131] apply asuperposition principle to multiple motions and show that existing algorithms for optical ow, 3-d motion and structure, etc. can be generalized to handle many motion distributions. Similarly,multiple motions can be thought of as a set of layers, each describing a particular motion, over aparticular domain. Techniques to separate these layers have been proposed by many authors: Darrelland Pentland explicitly take the support of homogeneous regions into account by using a multi-layer,cooperative robust estimation framework. Jespon and Black use an expectation-maximization (EM)algorithm to group a wide variety of component velocities into a �xed number of layers. Irani et al. [71]determine a dominant motion in an image using a least-squares approach and then group and segmentthe outlying motions. Their approach assumes that there is only one dominant motion and many out-lying motions, each of which is assumed to correspond to independently moving objects. Adiv [3] usesa Hough transform on a pre-computed optical ow �eld to group regions having velocities consistentwith roughly planar surfaces. This grouping is based on �nding neighbouring velocities sharing the



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 31same a�ne transformations. Negahdaripour and Lee [112] present a segmentation process based ona hierarchical clustering method that does not assume a pre-computed optical ow �eld. They �t ana�ne model to small regions of the image and then repeatedly merge neighbouring regions based onsimilarity of their a�ne parameters. Then, given two su�ciently large planar regions, a motion andstructure calculation can be performed. Wang and Adelson [152] use a clustering algorithm to groupvelocities into layers, each consistent with an a�ne motion. Bober and Kittler [27] use a block-basedHough transform in a robust estimation framework (redescending kernels) to obtain robust velocityestimates, including multiple motions, by clustering coherent motions at the same time the motionestimation is performed. Two con�dence measures based on support functions are also proposed.In addition, hierarchical frameworks are known to separate motion components with respect to spa-tiotemporal frequencies. Burt et al. [31] suggest that multiple motions could be handled separatelyusing di�erent spatiotemporal frequency channels.2.4.3 Parametric ModelsParametric models generally describe image motion with bivariate polynomials of varying order in theimage coordinates and provide strong constraints on motion, which usually results in the accurate in-ference of optical ow [26]. These models possess desirable qualities: the motion of large image regionsmay be described with a single set of parameters, due to the increased exibility of representation.In addition, parametric models are adequate for the description of discontinuous optical ow as eachsegmented region may be described with a particular set of motion parameters.Bergen et al. [20, 19] consider the computation of optical ow from the viewpoint of imageregistration: given an image sequence, the parameters that best align an image with the next in thesequence are to be computed. This framework uni�es many of the approaches already surveyed. Inall cases, a function is to be minimized with respect to di�erent parameters modelling velocity. Theiralgorithm has four basic components: pyramid construction, motion estimation, image warping andcoarse-to-�ne re�nement. A Laplacian pyramid is used to hierarchically represent the image data[30] and motion estimation is performed by SSD minimization with respect to a particular model ofmotion. Image warping uses the current parameter values to compute an optical ow �eld at time tand then reconstructs another image at time t from the image at time t� 1. Image reconstruction isperformed using bilinear interpolation. The warped image is then compared with the original imageand an error measure, based on image di�erence, is minimized with the Gauss-Newton method. Thelast component is a propagation of motion estimates from one level in the pyramid to the next lowerlevel where they are used as initial guesses for the iterative re�nement.Using Bergen et al.'s classi�cation, the optical ow methods presented above can be thought ofas parametric, quasi-parametric or non-parametric [19, 20]. Parametric models fully describe theindividual motion with a bivariate equation. For example, a�ne models approximate image velocityas: u(x; y) = a1(x; y) + a2x+ a3yv(x; y) = a4(x; y) + a5x+ a6y (2.48)which is reasonably valid when surfaces are far from the observer or the image region under analysisis small. This models optical ow as a superposition of uniform motion and rotation, dilation and



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 32shear. This is the model used by Fleet and Jepson [47, 46] to integrate component velocities in localneighbourhoods. Adiv [3] also uses this model to segment and �t velocity measurements to local planarpatches in the �rst stage of his algorithm. Spetsakis [138] uses an a�ne ow model and a hierarchyof Gabor �lters. A second model assumes planarity of local surfaces:u(x; y) = a1(x; y) + a2x+ a3y + a7x2 + a8xyv(x; y) = a4(x; y) + a5x+ a6y + a7xy + a8y2; (2.49)which is the velocity functional method of Waxman and Wohn [154] which they extended to include2nd-order curved surfaces. In both (2.48) and (2.49) the ai's are neighbourhood center velocitiesor 1st and 2nd-order velocity derivatives. These parameters completely describe a planar surfacevelocity �eld. Any constant velocity model, such as Lucas and Kanade's [94] is also an example of aparametric model, although very simple. [20, 19]. Usually, the order of a parametric model describesits applicability for large image regions.Non-parametric models are those typically used in global optical ow recovery. Horn and Schunck'sglobal smoothness [69] or Nagel's oriented smoothness constraint [107] are examples of non-parametricmodels. Quasi-parametric models use a combination of parametric and non-parametric models. Bergenet al. place rigid motion models in this class. Rigid motion arises from rigidly moving scene objectsunder perspective projection. Direct motion and structure methods are examples of this model: Hanna[60, 61] shows that the rigidity assumption can be used to overcome the aperture problem in mostcases. These parametric models are presented in a uni�ed hierarchical framework [20]. The hierarchyyields increased computational e�ciency and also allows for increased accuracy and robustness viacoarse-to-�ne re�nements and image warping.Black and Jepson [26] determine coarse optical ow via a correlation method [25] and �t para-metric models to segmented regions of the image by hypothesizing local planarity and using coarsevelocities to perform segmentation. Standard area-based regression techniques further re�ne these mo-tion estimates. Deviations from planarity are modelled by allowing local deformations in the motionestimates. Hence, their approach does not try to �t a single parametric model to the whole image,but many parametric models to individual segmented regions. Also, Haddadi and Kuo [57] propose aparametric smoothness model that decomposes optical ow into irrotational and solenoidal �elds andimposes a smoothness constraint on each �eld separately. Parameters are iteratively improved andsmoothing across motion boundaries is avoided.2.5 Temporal Re�nement MethodsMost methods presented above for computing optical ow do not incorporate motion estimates fromprevious calculations within an image sequence being acquired: given two or more images, optical owis computed only for one of the images. Recently, there has been some interest in incremental com-putation of optical ow [22, 24, 134, 49, 35]. The advantages include instantaneous access to optimalvelocity estimates, accuracy improvement as the integration of optical ow over time is performed,computational e�ciency gained by updating the estimates with the current frame and the ability toadapt to discontinuous optical ow as the observer or scene objects abruptly vary their motions.Black's [22] algorithm may also be viewed as an incremental model because it minimizes an ob-jective function that incorporates conservation of image intensity and spatiotemporal coherence in a



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 33robust estimation framework. Temporal continuity allows prediction of the next image velocity, as-suming uniform acceleration. Warping with bilinear interpolation is used to estimate the acceleration.Black and Anandan [24] use a Markov Random �eld (MRF) method in a reformulation of Black'sapproach. The MRF algorithm is parallel, local and detects occlusion boundaries in an incrementalfashion but, as formulated, can only handle integer motions. Singh [134] uses a Kalman �lter tointegrate velocity estimates computed by a hierarchical correlation method [133]. The Kalman �lterreduces the uncertainty of the estimates over time. This framework also detects occlusion boundaries.Fleet and Langley [48] use low-pass recursive �lters to produce and update gradient-based velocityestimates from a sequence of images. Chin et al. [35] present an extension of Horn and Schunck'sdense optical ow algorithm [69] that uses a temporal coherence constraint to produce near optimal,recursive ow estimates from multiple frames.3 DiscussionAlthough many methods and strategies have appeared, the estimation of image motion remains achallenging task: to date, except in limited circumstances, no technique is able to generate su�cientlyaccurate and dense optical ow �elds to allow the general recovery of motion and scene parameters in arealistic environment. In fact, motion and structure algorithms need very accurate optical ow to carryuseful 3-d motion and structure computations [15]. Also needed are accurate means of determiningthe reliability of computed image velocities. Such reliability measures have been proposed: covariancematrix eigenvalues [132, 135], Gaussian curvature [151], principle curvature [8, 64], spatial gradient[14], eigenvalues of a least-squares matrix [132] and support function values [27]. These con�dencemeasures allow for thresholding, yielding more accurate but sparser optical ow �elds. They mayalso be integrated in subsequent processing, such as weights in a least-squares motion and structurecalculation.Of importance in an accurate estimation of image motion in the surveyed methods is the require-ment for appropriate spatiotemporal sampling rates, in order to compute accurate spatiotemporalderivatives for di�erential-based methods, to reduce the search areas for matching-based methods orto limit the amount of aliasing when estimating optical ow with frequency-based �ltering methods.Too often, the assumption that imagery is free of aliasing e�ects is made. Conventional cameras usu-ally produce imagery with severe temporal aliasing, especially for signi�cant image motions. Reducingaliasing e�ects may be accomplished by increasing temporal sampling rates, image pre�ltering or byusing hierarchical processing. Of course, increased temporal sampling rates lead to more accurateoptical ow computations. However, for a number of reasons, including small temporal support (onlya few images) or fast image motion, such appropriately sampled imagery is not always available. Insuch cases, accurate temporal derivatives may be di�cult to obtain and hierarchical matching-basedmethods seem to be a natural choice. It has also been observed that some pre�ltering of the imagesequence prior to the extraction of basic image motion measurements, such as intensity derivatives orcorrelation surfaces, signi�cantly increases the accuracy of results [14]. For instance, a spatiotemporalGaussian smoothing of the image sequence results in more accurate derivatives for the methods of Lu-cas and Kanade [93, 94] and Horn and Schunck [69]. Anandan's and Singh's computational schemes[8, 135] also use pre�ltering of the images by computing hierarchical Laplacian images. It is believed



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 34that this high-pass �ltering emphasizes image structures that are desirable for correlation.Often, very restrictive assumptions about image motion are posed. For example, one of theseassumptions requires neighbouring velocities arising from the relative motion of a single surface tobe similar [69]. This requirement is usually imposed by applying isotropic smoothness constraintsonto velocity estimates. However, only a few simple cases of realistic imagery exhibit continuousmotion �elds: realistic imagery, such as outdoor scenes, possess complex structures for which globalsingle surface assumptions are inadequate. Attempts at estimating discontinuous image motion wereproposed by Corneluis and Kanade [37] and Nagel [105, 107, 109] in the form of an inhibition ofthe smoothness requirement across intensity discontinuities. However, it is obvious that intensitydiscontinuities may not necessarily represent motion discontinuities [144]. The problem posed byoccluding surfaces needs further investigation. Occlusion is a important source of visual information:optical ow at occlusion boundaries can be used to determine the direction of translation (the focusof expansion) [92] and segment the scene into independently moving objects [145], yet optical owestimation at occlusions is problematic. Adequate approaches to handling occlusion include lineapproaches which explicitly model intensity discontinuities and prevent smoothing over them, layeredor superposed parametric models, and mixed velocity distribution models assume the presence ofusually two velocities and discriminate them according to some criteria. In addition, occlusion hasbeen recently analytically described in Fourier space [18, 48].Alternatively, optical ow may be estimated with local constraints only [20, 33, 47, 94, 151]. Inthese schemes, no smoothness requirements are imposed and motion discontinuities may be preserved.Of course, the accuracy at motion boundaries or at regions of transparency highly depends on themodel of motion being used. For instance, single motion models are inadequate for handling occlusionand transparency properly. Nonetheless, the use of local constraints or parametric models may bemore appropriate in general [14], as no arbitrary smoothness requirement is imposed on the structureof optical ow.Lighting e�ects also constitute a problem in many image sequences. Constant scene illuminationand Lambertian surface reectance are either implicitly or explicitly assumed for most current opti-cal ow methods that use the brightness constancy assumption. Although the e�ects of highlights,shadows and illumination conditions on the estimation of optical ow have only been studied to alimited degree, it is possible to partially compensate for these e�ects and estimate image motion asa geometric quantity if the characteristics of the light sources are known. Towards this, the use ofmultiple light sources [160] and sets of multispectral constraints on image motion [96] have been used.Shading e�ects have also been modelled [101].Aside from lighting conditions, some surface reectance phenomena also pose di�culties. For ex-ample, transparent surfaces usually lead to multiple motions while highlights may create false motions.Perhaps due to its di�culty and infrequency of occurrence, transparent motions have been mainly ig-nored and attempts at estimating multiple motions have just begun to appear [20, 77]. Methods usingorientation and velocity sensitive �lters may contribute to the solving of this particular problem, asthey provide multiple measurements for each location [47]. Alternatively, superposition principles andlayered motions [39, 131, 152] are promising frameworks. However, segmenting multiple motion dis-tributions remains di�cult if no a priori assumption is made on the number of distributions presentwithin a support region.Lastly, we would like to emphasize that much of the image motion literature presents ow �eld



ACM Computing Surveys, Vol. 27, No. 3, pp. 433-467, 1995 35examples for a few image sequences, which can only be judged qualitatively. While the theory ofoptical ow computation is being addressed, the practise of optical ow is often neglected: far toolittle of the published work provide quantitative error analysis. Usually, only a qualitative comparisonis possible. Even then, it is often di�cult to assess which techniques are quantitatively better asauthors typically use their favorite image sequences, which are not usually available to the communityand for which the correct image motion is unknown. A widely available set of images for comparativetesting is needed. These images should have known optical ow �elds and allow a quantitative erroranalysis. This is especially the case for the newer work, as with the layered approaches to optical ow,where little or no quantitative analysis exists.There are various means of performing quantitative error analysis when correct optical ow infor-mation is available: error can be expressed as absolute error, relative error, angle error [47], RMS orSNR ratios, allowing one to compare optical ows for the same image sequence. Furthermore, quan-titative analysis is possible without motion information: RMS image reconstruction error has beenused to measure error for real image sequences when the correct motion information is unavailable[40, 85, 95, 163, 104, 114, 163].Acknowledgements This work has been supported in part by NSERC Canada, the Government ofCanada (through IRIS) and the Government of Ontario (through ITRC).
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