ON OPTICAL FLOW

J. L. BARRON

Dept. of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, Email: barron@csd.uwo.ca

S. S. BEAUCHEMIN

Dept. of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, Email: beau@csd.uwo.ca

D. J. FLEeET
Dept. of Computing Science, Queen’s University
Kingston, Ontario, K7L 3N6, Email: fleet@qucis.queensu.ca

Abstract

The measurement of optical flow is a fundamental problem in Computer Vision. Many
techniques have been presented in the literature and many more continue to appear. How
would one select an appropriate method for a given task? We overview the various classes
of optical flow methods and describe examples of each, emphasizing both the advantages
and drawbacks of each class of methods. We conclude the paper with an example of
optical flow as a tool for measuring the growth of corn seedlings.

1 Introduction

A fundamental problem in the processing of image sequences is the measurement of optical
flow or image velocity, an approximation to the 2-d motion field of an image sequence.
The 2-d image motion is the projection of the 3-d velocities of 3-d object points onto the
image plane that results from the relative motion of the sensor and/or the environment
(see Figure 1.1). Once computed, optical flow can be used to to infer the 3-d motion and
structure parameters of the camera and the scene (including time to collision), to perform
motion detection and object segmentation, to perform motion-compensated encoding, and to
compute stereo disparity (two papers®?7 provide an extensive list of references).

Optical flow methods can be classified as belonging to one of three groups: (1) Differen-
tial: these methods compute image velocity from spatio-temporal intensity derivatives, (2)
Frequency-based: these methods use energy/phase information in the output of velocity
tuned filters and (3) Matching: these methods compute image displacements by matching
various images features over a small number (usually 2 or 3) images.

All these approaches are thought to be broadly equivalent in many respects, yet differences
in implementation can lead to substantial differences in performance. In comparing different
optical flow methods, it is useful to distinguish three conceptual stages of processing: (a)
prefiltering or smoothing with low-pass/band-pass filters in order to extract signal structure
of interest and to enhance the signal-to-noise ratio, (b) the extraction of basic measurements,
such as spatiotemporal derivatives (to measure normal components of velocity) or local cor-
relation surfaces and (c) the integration of these measurements to produce a 2-d flow field,
which often involves assumptions about the smoothness of the underlying flow field. Some
algorithms produce normal velocity measurements (see below), as there is growing interest in
the direct use of normal velocity, thereby side-stepping some of the assumptions inherent in
current methods for integrating measurements to find 2-d velocity®.
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Figure 1.1: (a) A frame from the Yosemite Fly-Through sequence created by Lynn Quam
at SRI and (b) its correct optical flow field.

2 Optical Flow Methods

We begin with a brief description of the three main classes of optical flow methods and give

examples of each.

2.1 Differential Techniques

Differential techniques compute velocity from spatiotemporal derivatives of image intensity
or filtered versions of the image (using low-pass or band-pass filters). The first instances used
first-order derivatives and were derived from image translation!®23, i.e.

I(x,t) = I(x—vt0), (2.1)

where v = (u, v)T and x = (z,y). From a 1°* order Taylor expansion of (2.1)** or more gen-
erally from an assumption that intensity is conserved, dI(x, t)/dt = 0, the gradient constraint

equation is easily derived:
VIix,t)-v + L(x,t) = 0, (2.2)

where I;(x, t) denotes the partial time derivative of I(x, t), VI(x,t) = (I.(x, t), I,(x, t))T
is the spatial intensity gradient and VI - v denotes the usual dot product. Equation (2.2)
yields only the normal component of image velocity relative to spatial contours of constant
intensity. For example, Figure 2.1a shows a local contour of constant intensity that moves
up and to the right with velocity v. The gradient constraint projects v onto the direction
of the spatial gradient (normal to the contour). This annihilates the tangential component,
vy, thereby constraining only the normal component v,, = sn. The normal speed s and the
normal direction n are given by

B —LIi(x, 1) and n(x _ Vi(x,t)
0= Ko, ™M T Nl (2:3)
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Another way to see this is to note that there are two unknown components of velocity v
in (2.2), constrained by only one linear equation. This equation describes a line in velocity
space as shown in Figure 2.1b. Any velocity on this line satisfies (2.2). The velocity on the
line with the smallest magnitude is the normal velocity v,. Further constraints in addition to
(2.2) are necessary to solve for both components of v, uniquely specifying a point on the line.
When the local structure of the image is one dimensional, then further constraints on flow
are not available in that immediate neighbourhood and velocity is underconstrained; this is
commonly called the aperture problem>!.

Aperture y
b
AL v, = =LVI

Y
=

(a) (0)
Figure 2.1: (a) The aperture problem: only the component of velocity normal to the line’s
orientation, v,,, can be recovered. The tangential component of velocity, v, cannot be recov-
ered. (b) The Motion Constraint Equation (2.2) yields a line in v = (u, v) space, the velocity
with the smallest magnitude on that line is v,. Another velocity on the line is the correct
full velocity v.

Second-order differential methods use second-order derivatives (the Hessian of I) to con-
strain 2-d velocity?337:38:

Lop(x,t) Lyp(x,t) 03 4 I (%, 1) B 0 (2.4)

Ly(x,t) I,(x,t) v Ly(x, 1) N 0/ '
Equation (2.4) can be derived from (2.1) or from the conservation of VI(x, t), dVI(x,t)/dt =
0. Strictly speaking, the conservation of VI(x, t) implies that first-order deformations of
intensity (e.g. rotation or dilation) should not be present. This is therefore a stronger
restriction than (2.2) on permissible motion fields. To measure image velocity, assuming
dVI(x,t)/dt = 0, the constraints in (2.4) may be used in isolation or together with (2.2)
to yield an over-determined system of linear equations?®. However, if the aperture problem
prevails in a local neighbourhood, then because of the sensitivity of numerical differentiation,
274_order derivatives cannot usually be measured accurately enough to determine the tangen-
tial component of v. As a consequence, velocity estimates from 2"%-order methods are often
assumed to be sparser and less accurate than estimates from 1%*-order methods.

Another way to constrain v(x) is to combine local estimates of normal velocity and/or

2-d velocity through space and time, thereby producing more robust estimates of v(x).
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There are two common approaches for accomplishing this. The first approach fits the nor-
mal velocity measurements in each neighbourhood to a local model for 2-d velocity (e.g. a low-
order polynomial model), using least-squares minimization or a Hough transform?5:25:30,35:40,
Usually v(x) is taken to be constant, although linear models for v(x) have been used successfully
For example, Lucas and Kanade®® and others®?53¢ implemented a weighted least-squares
(LS) fit of local first-order constraints (2.2) to a constant model for v in each small spatial

neighbourhood € by minimizing

Z WQ(X) [VI(x,t)-v + Li(x, t)]2 , (2.5)
XEQ

40,16

where W(x) denotes a window function that gives more influence to constraints at the centre
of the neighbourhood than those at the periphery. The solution to (2.5) is given by

v = (ATw2A)7tATwin | (2.6)
where, for n points x; € { at a single time ¢,
A=[VIx), ... VI, W = diag[W(x1), ..., W(x,)], and b = —(I;(x1), .., Ii(x,))7 .
Here, ATW?A is a 2 x 2 matrix:

rrs | SWREE SWAOLMLX)
AW = S L eLx) | SWORN) | (2.7)

where all sums are taken over points in the neighbourhood 2.

Waxman and Wohn’s velocity functional method*® assumes v(x, t) = (u(x, t), v(x, t)) at
any image point on a curved surface can be expressed as a 2"¢ order Taylor series expansion
about that point. Using the motion constraint equation, they obtain 1 linear equation relating
a normal velocity to v(x) and its 1°¢ and 2"? order spatial derivatives. Given 12 or more
normal velocities in a local neighbourhood one can than solve for v and its derivatives in the
least squares sense. This reduces to 8 equations in the planar case. Murray and Buxton®?
developed a similar approach for planar surfaces.

The second approach uses global smoothness constraints (regularization) in which the
velocity field is defined implicitly in terms of the minimum of a functional defined over the
image?®?3. Horn and Schunck®® combined the gradient constraint (2.2) with a global smooth-
ness term to constrain the estimated velocity field v, minimizing

/D(VI-V—|—It)2—|—/\2(H Vu |2 4| Vo [|2) dx (2.8)

defined over a domain D, where the magnitude of A reflects the influence of the smoothness
term.

Nagel was one of the first to use second-order derivatives to measure optical flow®®. Like
Horn and Schunck, the basic measurements are integrated using a global smoothness con-
straint. As an alternative to the constraint in (2.8), Nagel suggested an oriented-smoothness
constraint in which smoothness is not imposed across steep intensity gradients (edges) in an
attempt to handle occlusion. The problem is formulated as the minimization of

a2

/D(VITV + It)2 + W [(ley — Uy[x)z + (?Jxly — ?Jny)2 + (S(Uz, + U?/ + ?Jz, + ?J;)] dx.
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(2.9)

Minimizing (2.9) with respect to v attenuates the variation of the flow Vv in the direction
perpendicular to the gradient.

Hildreth?? proposed a regularization method that finds the velocity of a contour subject
to a smoothness constraint and the minimization of the motion constraint equation for each
normal velocities measured along the contour.

Of course, one requirement of differential techniques is that /(x, ¢) must be differentiable.
This implies that temporal smoothing at the sensors is needed to avoid aliasing and that
numerical differentiation must be done carefully. We propose that spatio-temporal Gaussian
smoothing, typically with a standard deviation of between 1.5 and 3.0 be used and that 4-point
central differences with kernels 11—2(—1, 8,0, —8,1) be used for differentiation®. The often stated
restrictions that gradient-based techniques require image intensity to be nearly linear, with
velocities less than 1 pixel/frame, arise from the use of 2 frames, poor numerical differentiation
or input signals corrupted by temporal aliasing. For example, with 2 frames, derivatives are
estimated using 1%%-order backward differences, which are accurate only when 1) the input is
highly over-sampled or 2) intensity structure is nearly linear. When aliasing cannot be avoided
in image acquisition, one way to circumvent the problem is to apply differential techniques in
a coarse-fine manner, for which estimates are first produced at coarse scales where aliasing is
assumed to be less severe, with velocities less than 1 pixel/frame. These estimates are then
used as initial guesses to warp finer scales to compensate for larger displacements®?%. Such
methods are discussed at greater length below.

The need for confidence measures on computed velocities cannot be understated, they
can be used to threshold flow fields or as a weight term in a subsequent calculation. Most
techniques do not provide confidence measures. The smallest eigenvalue of (2.7) was used
successfully as a confidence measure®36. Other proposals include the determinant of a Hes-
sian matrix (Gaussian curvature)!, the condition number of a solution matrix®® and the
magnitude of [|VI]|3°.

2.2 Frequency-Based Methods

A second class of optical flow techniques is based on the use of velocity-tuned filters
They are called frequency-based methods owing to the design of velocity-tuned filters in the
Fourier domain!'”. The Fourier transform of a translating 2-d pattern (2.1) is

1,9,21,16

Ik,w) = Iy(k) §(w+vTk), (2.10)

where Io(k) is the Fourier transform of I(x,0), (k) is a Dirac delta function, w denotes
temporal frequency and k = (k;, k) denotes spatial frequency. This shows that all nonzero
power associated with a translating 2-d pattern lies on a plane through the origin in frequency
space.

Interestingly, it has been shown that certain energy-based methods are equivalent to
correlation-based methods! and to the gradient-based approach of Lucas and Kanade?. In-
deed, the motion constraint equation becomes k- v +w = 0 in frequency space.

Heeger’s method?! formulated the optical flow problem as a least-squares fit of energy
output of a family of space-time Gabor filters to a plane in frequency space. Ideally, for a
single translational motion, the responses of these filters are concentrated about a plane in
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frequency space. Heeger derives an equation for the expected response R(u, v) of a Gabor-
energy filter tuned to frequency (k;, ky,, w) for translating white noise as a function of velocity.
If M;, 1 < i< 12, denote the set of filters with different orientation tunings and m; and R;
be the sum of measured and predicted energies, m; and R;, from filters j in the set M; then
a least-squares estimate for (u,v) that minimizes the difference between the predicted and
measured motion energies is given by the minimum of

flu,v) = ;[m—m% : (2.11)

The fitting of filter energies to a plane in frequency has become a somewhat common theme,
providing the basis for several optical flow methods®.

The other main optical flow methods that exploit velocity-tuned filters are the class of
phase-based approaches. For example, Fleet and Jepson'® define component velocity in terms
of the instantaneous motion normal to level phase contours in the output of band-pass filters.
(Note: normal velocity is normal to local intensity structure while component velocity is
normal to local phase structure.) The filters are used to decompose the input signal according
to scale, speed and orientation. Each filter output is complex-valued and may be written as

R(x,t) = p(x,1t)explio(x, )], (2.12)

where p(x,t) and ¢(x, t) are the amplitude and phase parts of R. The component of 2-d
velocity in the direction normal to level phase contours is then given by v,, = sn, where the
normal speed and direction are given by

s = -t du(x, 1) and n Vox, 1)

Vo(x, 1) I, T Ve h 1,

where Vo(x, 1) = (¢u(x, t), dy(x, 1))T. In effect, this is a differential technique applied to
phase rather than intensity. The phase derivatives are computed using the identity

(2.13)

Im[R*(x,t) Ry(x,1)]
|R(x, )| ’

Ps(x,1) = (2.14)
where R* is the complex conjugate of K. The use of phase is motivated by their claim that
the phase component of band-pass filter outputs is more stable than the amplitude compo-
nent when small deviations from image translations that regularly occur in 3-d scenes are
considered'®. However, phase can also be unstable, with instabilities occurring in the neigh-
bourhoods about phase singularities. Such instabilities can be detected with a straightforward
constraint on the instantaneous frequency of the filter output and its amplitude variation in
space-time!718:

| VlegR(x,1) — i(k,w) |, < or7, (2.15)

where (k,w) denotes the spatiotemporal frequency to which the filter is tuned, oy is the
standard deviation of the isotropic amplitude spectra they use and 7 denotes a threshold that
can be used to reject unreliable component velocity measurements. A second constraint on the
amplitude of response is also used to ensure a reasonable signal-to-noise ratio. As currently
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formulated Fleet and Jepson’s method does not provide confidence measures. Finally, given
the stable component velocity estimates from the different filter channels, a linear velocity
model is fit to each local region. To ensure that there is sufficient local information for reliable
velocity estimates, they introduce further constraints on the conditioning of the linear system
and on the residual LS error.

The class of phase-based approaches can also be generalized to include zero-crossing
methods!?1322:41 since zero-crossings can be viewed as level phase-crossings. For exam-
ple, Waxman, Wu and Bergholm*! apply spatiotemporal filters to binary edge maps to track
edges in real-time. They apply a number of filters based on Gaussian envelopes and their
derivatives to edge maps of an image sequence and derive velocity for ratios of the filters’
responses.

2.3 Matching Techniques

Accurate numerical differentiation may be impractical because of noise, because a small num-
ber of frames exist or because of aliasing in the image acquisition process. In these cases
differential /frequency approaches may be inappropriate and it is natural to turn to matching
techniques. Region-based matching®2?829 and feature-based matching? are two approaches.
Region-based matching methods define velocity v as the shift d = (d,, d,) that yields the best
fit between image regions at different times. Finding the best match amounts to maximizing a
similarity measure (over d), such as the normalized cross-correlation or minimizing a distance
measure, such as the sum-of-squared difference (SSD):

SSDiaxid) = 30 30 W) e+ () - x+ d 4 (1.0)F
— W(x) * [L(x) = Lix+d)? (2.16)

where W denotes a discrete 2-d window function, and d = (d,, d,) take on integer values.

There is a close relationship between the SSD distance measure, the cross-correlation
similarity measure, and differential techniques. Minimizing the SSD distance amounts to
maximizing the integral of product term [;(x)I3(x + d). Also, the difference in (2.16) can be
viewed as a window-weighted average of a first-order approximation to the temporal derivative
of I(x, t).

Matching techniques reported by Anandan® and Singh®® are based on a Laplacian pyra-
mid and a coarse-to-fine SSD-based matching strategy. The Laplacian pyramid'! allows the
computation of large displacements between frames and helps to enhance image structure.
The pyramid image structure also yields considerable computational savings. Measures of
principle curvature® or eigenvalues of a covariance matrix®® served as confidence measures.

3 Performance Analysis

We have conducted a performance analysis of nine different optical flow techniques® that
includes instances of the three classes of optical flow presented above. For a number of
synthetic image sequences (for which the correct flows are known) and real image sequences
(for which the correct flows are unknown) we analyzed these techniques with respect to the
accuracy, density of flow and computational efficiency. In table 1.1 we show a set of error
results for the Yosemite Fly Through sequence for a number of techniques described in®.
Since the image sequences were all appropriately sampled with small motions (typically 1-4
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pixels/frame) conditions were favourable for differential approaches. For example, we did not
consider stop-and-shoot sequences!?; in fact, only matching techniques would be appropriate
here for this type of data due to their robustness with respect to aliasing. We found Fleet and
Jepson’s phase-gradient based method!'® produced the best quantitative results overall with
Lucas and Kanade’s intensity-gradient based method®® being second. Lucas and Kanade’s
method was significantly more efficient than Fleet and Jepson’s method and in addition
provided good confidence measures®®. Matching (correlation-based) techniques were not as
good, the error depended on how close the motion was to an integer number of pixels per frame,
that is, these techniques had difficulty in measuring subpixel motions. Matching techniques
are obviously more suitable for larger motions and aliased (under sampled) image sequences
(the coarse-to-fine processing in a Gaussian or Laplacian pyramid yield these properties),
which we did not test. The optical flow programs and data used in this study are available
via ftp (ftp to ftp.csd.uwo.ca and cd to pub/vision) and comparative results are being
reported in current conferences.

Technique Average | Standard | Density
Error Deviation
Horn and Schunck (original) 31.69° 31.18° 100%
Horn and Schunck (modified) 9.78° 16.19° 100%
Horn and Schunck (modified) ||VI|| > 5.0 | 5.59° 11.52° 32.9%
Lucas and Kanade (A2 > 1.0) 4.28° 11.41° 35.1%
Uras et al. (unthresholded) 8.94° 15.61° 100%
Nagel 10.22° 16.51° 100%
Nagel [V1][s > 5.0 6.06° | 1202° | 32.9%
Anandan 13.36° 15.64° 100%
Singh (Step 1, n =2, w = 2) 15.28° 19.61° 100%
Singh (Step 2, n = 2, w = 2) 10.44° 13.94° 100%
Heeger 11.93° 23.16° 44.8%
Waxman et al. o5 = 2.0 20.05° 23.23° 7.4%
Fleet and Jepson (7 = 1.25) 5.28° 14.34° 30.6%
Fleet and Jepson (7 = 2.5) 4.63° 13.42° 34.1%

Table 3.1: Summary of Yosemite 2-d Velocity Results

More recently, we examined the use of reconstruction (warping) error as a quantitative
error metric for those flows where the correct flow fields are unknown?”. Given a computed
optical flow field for some image we use it to reconstruct the next image in the sequence
and then compute the RMS difference between the actual next image and its reconstructed
version. We found that several backward and forward reconstruction methods using bicubic
interpolation on Gaussian smoothed or confidence measure weighted velocity fields provided
the best correlation between quantitative and RMS errors for synthetic images sequences (the
reader is directed to a paper?” for full details). Reconstruction error was then used to provide
a quantitative error metric for real image sequences with unknown correct flow.

4 Problems and Current Research Directions

Still, several major problems remain:
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o Acquisition of image sequences using conventional video cameras typically exhibit tem-
poral aliasing. The velocities are often larger than 10 pixels/frame, and there is only a
minimal amount of temporal blurring. In addition, as there is usually little mechanical
stabilization, the motion often varies radically from frame to frame.

o Lighting effects can also be a problem in many image sequences. Constant scene illumi-
nation and Lambertian reflectance are assumed for most current optical flow methods
(inherent in the use of (2.2)). Highlights, shadows, transparency, and varying illumina-
tion, have only been studied to a limited degree.

¢ Iinally, occlusion remains a very difficult problem, especially for small fragmented ob-
jects such as bushes or trees.

Some reflectance phenomena, for example transparency, can lead to multiple motions.
This can usually be dealt with using some of the approaches to occlusion (segmentation)
described below.

4.1 Warping and Coarse-to-Fine Strategies

One way to deal with large erratic displacements is to dispense with larger amounts of tem-
poral filtering, and instead use coarse-to-fine control strategies and image warping in order
to keep the image sufficiently well registered at the scale of interest where simple forms of
numerical differentiation remain reasonably accurate®®35. Bergen et al.® proposed a hierar-
chical framework that unifies several different model-based flow methods. Using an affine flow
model in an image region allows one both to judge the quality of that model’s fit to the data
(perhaps splitting the region if necessary) and to fill in sparse flow fields using the computed
affine parameters. Multiple motions can also be thought of as a set of velocity layers, each
describing a particular motion?.

Such modifications to the basic framework appear to be suitable for large regions of the
image. But the tracking of small target moving over longer distances within this framework

is still often problematic.
4.2 Motion Segmentation

Another current theme in current research on flow concerns the notion of segmentation in
the face of occlusion and transparency. Attempts to estimate discontinuous motion can be
classified into two groups. The first group consists of binary line processes'? that explicitly
represent intensity discontinuities, for example by breaking the smoothness constraint at pixels
having a large spatial gradient!%26, Another class of methods iteratively decomposes the scene
into different objects, by first fitting a single model, then finding regions inconsistent with
the origin fit. These inconsistent regions then becomes starting points for another single
motion model, from which regions of large deviation can be extracted, etc. A variation on
this theme involves the use of mixed velocity distribution models?43* to find several velocities
simultaneously in a given region of the image. Here the less dominant motions are initially
treated as outliers. Mixed velocity models are also appropriate for measuring transparent
motions. Fleet and Jepson’s method is capable of measuring component velocities but no
means is provided for segmenting the component velocities into the two or more full velocities
each of the component velocities belong to.
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5 Plant Growth: An Application of Optical Flow

We used the optical flow method attributed to Lucas and Kanade®® with some of the modi-
fications proposed by Simoncelli et al.*® plus some additional thresholding criteria stated in
Barron and Liptay’ to measure the growth rate of a corn seeding using optical flow. We
used a Sony colour camera with non-square pixels: each pixel was 9.8 x 107 meters high and
8.4 x 1075 meters wide. We scaled all horizontal components of velocity by % to take this
into account. We used a YIQ colour to grayvalue transformation (each pixel of a grayvalue
image was computed as 0.299, 0.587 and 0.114 respectively of the corresponding red, green
and blue pixels of a colour image) to convert the images into grayscale images. Constant
spatio-temporal scene illumination was maintained during the growth sequence by using flu-
orescent lighting and blocking the windows of the experimental room to ensure the room was
devoid of natural light. Constant scene illumination ensures there are no non-zero intensity
derivatives not due to motion and hence no detection of false motion. Surface reflectivity
was minimized by using a black rayon velvet cloth as the scene’s background. The camera
was placed in close proximity to the front of the seedling to ensure sufficient textural detail
was captured by image acquisition. The temporal sampling was 2 minutes per frame and was
empirically determined. We employed both eigenvalue thresholding® and similarity thresh-
olds (local velocities should be similar and upwards)” to remove outlier velocities. Figure 5.1
shows one image of the sequence plus the computed normal and thresholded full image veloc-
ity fields. The average rate of growth for this image was 1.982 x 1077 4 8.9393 x 10~? meters
per second. An experiment using optical flow to measure plant growth while the plant’s root
temperature was varied showed that there was good correlation between root temperature

and growth rate.

\W \«“

(a) Corn Seedling (b) Normal Flow (¢) Full Flow

Figure 5.1: An image of the corn seedling sequence and its normal and full optical flow
fields. The corn seedling’s root temperature was 24°C, the normal and full flow fields were
sampled by 2 and scaled by 50.0. The flows were computed using balanced smoothing and
differentiation. The full flow (¢) was computed from neighbourhoods of local normal flow (b)
and then thresholded as described in Barron and Liptay’.
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