
1On Optical FlowJ. L. BarronDept. of Computer Science, University of Western OntarioLondon, Ontario, N6A 5B7, Email: barron@csd.uwo.caS. S. BeaucheminDept. of Computer Science, University of Western OntarioLondon, Ontario, N6A 5B7, Email: beau@csd.uwo.caD. J. FleetDept. of Computing Science, Queen's UniversityKingston, Ontario, K7L 3N6, Email: eet@qucis.queensu.caAbstractThe measurement of optical ow is a fundamental problem in Computer Vision. Manytechniques have been presented in the literature and many more continue to appear. Howwould one select an appropriate method for a given task? We overview the various classesof optical ow methods and describe examples of each, emphasizing both the advantagesand drawbacks of each class of methods. We conclude the paper with an example ofoptical ow as a tool for measuring the growth of corn seedlings.1 IntroductionA fundamental problem in the processing of image sequences is the measurement of opticalow or image velocity, an approximation to the 2-d motion �eld of an image sequence.The 2-d image motion is the projection of the 3-d velocities of 3-d object points onto theimage plane that results from the relative motion of the sensor and/or the environment(see Figure 1.1). Once computed, optical ow can be used to to infer the 3-d motion andstructure parameters of the camera and the scene (including time to collision), to performmotion detection and object segmentation, to perform motion-compensated encoding, and tocompute stereo disparity (two papers5;27 provide an extensive list of references).Optical ow methods can be classi�ed as belonging to one of three groups: (1) Di�eren-tial: these methods compute image velocity from spatio-temporal intensity derivatives, (2)Frequency-based: these methods use energy/phase information in the output of velocitytuned �lters and (3) Matching: these methods compute image displacements by matchingvarious images features over a small number (usually 2 or 3) images.All these approaches are thought to be broadly equivalent in many respects, yet di�erencesin implementation can lead to substantial di�erences in performance. In comparing di�erentoptical ow methods, it is useful to distinguish three conceptual stages of processing: (a)pre�ltering or smoothing with low-pass/band-pass �lters in order to extract signal structureof interest and to enhance the signal-to-noise ratio, (b) the extraction of basic measurements,such as spatiotemporal derivatives (to measure normal components of velocity) or local cor-relation surfaces and (c) the integration of these measurements to produce a 2-d ow �eld,which often involves assumptions about the smoothness of the underlying ow �eld. Somealgorithms produce normal velocity measurements (see below), as there is growing interest inthe direct use of normal velocity, thereby side-stepping some of the assumptions inherent incurrent methods for integrating measurements to �nd 2-d velocity6.
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(a) (b)Figure 1.1: (a) A frame from the Yosemite Fly-Through sequence created by Lynn Quamat SRI and (b) its correct optical ow �eld.2 Optical Flow MethodsWe begin with a brief description of the three main classes of optical ow methods and giveexamples of each.2.1 Di�erential TechniquesDi�erential techniques compute velocity from spatiotemporal derivatives of image intensityor �ltered versions of the image (using low-pass or band-pass �lters). The �rst instances used�rst-order derivatives and were derived from image translation15;23, i.e.I(x; t) = I(x � v t; 0) ; (2.1)where v = (u; v)T and x = (x; y). From a 1st order Taylor expansion of (2.1)23 or more gen-erally from an assumption that intensity is conserved, dI(x; t)=dt = 0, the gradient constraintequation is easily derived: rI(x; t) � v + It(x; t) = 0 ; (2.2)where It(x; t) denotes the partial time derivative of I(x; t), rI(x; t) = (Ix(x; t); Iy(x; t))Tis the spatial intensity gradient and rI � v denotes the usual dot product. Equation (2.2)yields only the normal component of image velocity relative to spatial contours of constantintensity. For example, Figure 2.1a shows a local contour of constant intensity that movesup and to the right with velocity v. The gradient constraint projects v onto the directionof the spatial gradient (normal to the contour). This annihilates the tangential component,vt, thereby constraining only the normal component vn = sn. The normal speed s and thenormal direction n are given bys(x; t) = � It(x; t)k rI(x; t) k2 and n(x; t) = rI(x; t)k rI(x; t) k2 : (2.3)



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 3Another way to see this is to note that there are two unknown components of velocity vin (2.2), constrained by only one linear equation. This equation describes a line in velocityspace as shown in Figure 2.1b. Any velocity on this line satis�es (2.2). The velocity on theline with the smallest magnitude is the normal velocity vn. Further constraints in addition to(2.2) are necessary to solve for both components of v, uniquely specifying a point on the line.When the local structure of the image is one dimensional, then further constraints on oware not available in that immediate neighbourhood and velocity is underconstrained; this iscommonly called the aperture problem31.&%'$-6��� vnvt v(a)ApertureXXz 6 -v uHHHHHHHHHHHH����� vn = �ItrIjjrIjj22(b)Figure 2.1: (a) The aperture problem: only the component of velocity normal to the line'sorientation, vn, can be recovered. The tangential component of velocity, vt, cannot be recov-ered. (b) The Motion Constraint Equation (2.2) yields a line in v = (u; v) space, the velocitywith the smallest magnitude on that line is vn. Another velocity on the line is the correctfull velocity v.Second-order di�erential methods use second-order derivatives (the Hessian of I) to con-strain 2-d velocity33;37;38:" Ixx(x; t) Iyx(x; t)Ixy(x; t) Iyy(x; t) #  v1v2 ! +  Itx(x; t)Ity(x; t) ! =  00 ! : (2.4)Equation (2.4) can be derived from (2.1) or from the conservation ofrI(x; t), drI(x; t)=dt =0. Strictly speaking, the conservation of rI(x; t) implies that �rst-order deformations ofintensity (e.g. rotation or dilation) should not be present. This is therefore a strongerrestriction than (2.2) on permissible motion �elds. To measure image velocity, assumingdrI(x; t)=dt = 0, the constraints in (2.4) may be used in isolation or together with (2.2)to yield an over-determined system of linear equations20. However, if the aperture problemprevails in a local neighbourhood, then because of the sensitivity of numerical di�erentiation,2nd-order derivatives cannot usually be measured accurately enough to determine the tangen-tial component of v. As a consequence, velocity estimates from 2nd-order methods are oftenassumed to be sparser and less accurate than estimates from 1st-order methods.Another way to constrain v(x) is to combine local estimates of normal velocity and/or2-d velocity through space and time, thereby producing more robust estimates of v(x)35.



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 4There are two common approaches for accomplishing this. The �rst approach �ts the nor-mal velocity measurements in each neighbourhood to a local model for 2-d velocity (e.g. a low-order polynomial model), using least-squares minimization or a Hough transform15;25;30;35;40.Usually v(x) is taken to be constant, although linear models for v(x) have been used successfully40;16.For example, Lucas and Kanade30 and others2;25;36, implemented a weighted least-squares(LS) �t of local �rst-order constraints (2.2) to a constant model for v in each small spatialneighbourhood 
 by minimizingXx2
W 2(x) [rI(x; t) � v + It(x; t)]2 ; (2.5)where W (x) denotes a window function that gives more inuence to constraints at the centreof the neighbourhood than those at the periphery. The solution to (2.5) is given byv = (ATW 2A)�1ATW 2b ; (2.6)where, for n points xi 2 
 at a single time t,A = [rI(x1); :::; rI(xn)]T ;W = diag[W (x1); :::; W (xn)] ; and b = �(It(x1); :::; It(xn))T :Here, ATW 2A is a 2� 2 matrix:ATW 2A = " PW 2(x)I2x(x) PW 2(x)Ix(x)Iy(x)PW 2(x)Iy(x)Ix(x) PW 2(x)I2y (x) # ; (2.7)where all sums are taken over points in the neighbourhood 
.Waxman and Wohn's velocity functional method40 assumes v(x; t) = (u(x; t); v(x; t)) atany image point on a curved surface can be expressed as a 2nd order Taylor series expansionabout that point. Using the motion constraint equation, they obtain 1 linear equation relatinga normal velocity to v(x) and its 1st and 2nd order spatial derivatives. Given 12 or morenormal velocities in a local neighbourhood one can than solve for v and its derivatives in theleast squares sense. This reduces to 8 equations in the planar case. Murray and Buxton32developed a similar approach for planar surfaces.The second approach uses global smoothness constraints (regularization) in which thevelocity �eld is de�ned implicitly in terms of the minimum of a functional de�ned over theimage23;33. Horn and Schunck23 combined the gradient constraint (2.2) with a global smooth-ness term to constrain the estimated velocity �eld v, minimizingZD(rI � v + It)2 + �2(k ru k22 + k rv k22) dx (2.8)de�ned over a domain D, where the magnitude of � reects the inuence of the smoothnessterm.Nagel was one of the �rst to use second-order derivatives to measure optical ow33. LikeHorn and Schunck, the basic measurements are integrated using a global smoothness con-straint. As an alternative to the constraint in (2.8), Nagel suggested an oriented-smoothnessconstraint in which smoothness is not imposed across steep intensity gradients (edges) in anattempt to handle occlusion. The problem is formulated as the minimization ofZD(rITv + It)2 + �2jjrI jj22+ 2� h(uxIy � uyIx)2 + (vxIy � vyIx)2 + �(u2x + u2y + v2x + v2y)i dx:



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 5(2.9)Minimizing (2.9) with respect to v attenuates the variation of the ow rv in the directionperpendicular to the gradient.Hildreth22 proposed a regularization method that �nds the velocity of a contour subjectto a smoothness constraint and the minimization of the motion constraint equation for eachnormal velocities measured along the contour.Of course, one requirement of di�erential techniques is that I(x; t) must be di�erentiable.This implies that temporal smoothing at the sensors is needed to avoid aliasing and thatnumerical di�erentiation must be done carefully. We propose that spatio-temporal Gaussiansmoothing, typically with a standard deviation of between 1.5 and 3.0 be used and that 4-pointcentral di�erences with kernels 112(�1; 8; 0;�8; 1) be used for di�erentiation5. The often statedrestrictions that gradient-based techniques require image intensity to be nearly linear, withvelocities less than 1 pixel/frame, arise from the use of 2 frames, poor numerical di�erentiationor input signals corrupted by temporal aliasing. For example, with 2 frames, derivatives areestimated using 1st-order backward di�erences, which are accurate only when 1) the input ishighly over-sampled or 2) intensity structure is nearly linear. When aliasing cannot be avoidedin image acquisition, one way to circumvent the problem is to apply di�erential techniques ina coarse-�ne manner, for which estimates are �rst produced at coarse scales where aliasing isassumed to be less severe, with velocities less than 1 pixel/frame. These estimates are thenused as initial guesses to warp �ner scales to compensate for larger displacements8;26. Suchmethods are discussed at greater length below.The need for con�dence measures on computed velocities cannot be understated, theycan be used to threshold ow �elds or as a weight term in a subsequent calculation. Mosttechniques do not provide con�dence measures. The smallest eigenvalue of (2.7) was usedsuccessfully as a con�dence measure5;36. Other proposals include the determinant of a Hes-sian matrix (Gaussian curvature)41, the condition number of a solution matrix38 and themagnitude of jjrI jj25.2.2 Frequency-Based MethodsA second class of optical ow techniques is based on the use of velocity-tuned �lters1;9;21;16.They are called frequency-based methods owing to the design of velocity-tuned �lters in theFourier domain1;17. The Fourier transform of a translating 2-d pattern (2.1) isÎ(k; !) = Î0(k) �(! + vTk) ; (2.10)where Î0(k) is the Fourier transform of I(x; 0), �(k) is a Dirac delta function, ! denotestemporal frequency and k = (kx; ky) denotes spatial frequency. This shows that all nonzeropower associated with a translating 2-d pattern lies on a plane through the origin in frequencyspace.Interestingly, it has been shown that certain energy-based methods are equivalent tocorrelation-based methods1 and to the gradient-based approach of Lucas and Kanade2. In-deed, the motion constraint equation becomes k � v + ! = 0 in frequency space.Heeger's method21 formulated the optical ow problem as a least-squares �t of energyoutput of a family of space-time Gabor �lters to a plane in frequency space. Ideally, for asingle translational motion, the responses of these �lters are concentrated about a plane in



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 6frequency space. Heeger derives an equation for the expected response R(u; v) of a Gabor-energy �lter tuned to frequency (kx; ky ; !) for translating white noise as a function of velocity.If Mi, 1 � i � 12, denote the set of �lters with di�erent orientation tunings and �mi and �Ribe the sum of measured and predicted energies, mj and Rj, from �lters j in the set Mi thena least-squares estimate for (u; v) that minimizes the di�erence between the predicted andmeasured motion energies is given by the minimum off(u; v) = 12Xi=1 �mi � �miRi(u; v)�Ri(u; v)�2 : (2.11)The �tting of �lter energies to a plane in frequency has become a somewhat common theme,providing the basis for several optical ow methods9.The other main optical ow methods that exploit velocity-tuned �lters are the class ofphase-based approaches. For example, Fleet and Jepson16 de�ne component velocity in termsof the instantaneous motion normal to level phase contours in the output of band-pass �lters.(Note: normal velocity is normal to local intensity structure while component velocity isnormal to local phase structure.) The �lters are used to decompose the input signal accordingto scale, speed and orientation. Each �lter output is complex-valued and may be written asR(x; t) = �(x; t) exp[i�(x; t)] ; (2.12)where �(x; t) and �(x; t) are the amplitude and phase parts of R. The component of 2-dvelocity in the direction normal to level phase contours is then given by vn = sn, where thenormal speed and direction are given bys = ��t(x; t)k r�(x; t) k2 and n = r�(x; t)k r�(x; t) k2 ; (2.13)where r�(x; t) = (�x(x; t); �y(x; t))T . In e�ect, this is a di�erential technique applied tophase rather than intensity. The phase derivatives are computed using the identity�x(x; t) = Im[R�(x; t) Rx(x; t) ]jR(x; t)j2 ; (2.14)where R� is the complex conjugate of R. The use of phase is motivated by their claim thatthe phase component of band-pass �lter outputs is more stable than the amplitude compo-nent when small deviations from image translations that regularly occur in 3-d scenes areconsidered18. However, phase can also be unstable, with instabilities occurring in the neigh-bourhoods about phase singularities. Such instabilities can be detected with a straightforwardconstraint on the instantaneous frequency of the �lter output and its amplitude variation inspace-time17;18: k r logR(x; t) � i(k; !) k2 � �k � ; (2.15)where (k; !) denotes the spatiotemporal frequency to which the �lter is tuned, �k is thestandard deviation of the isotropic amplitude spectra they use and � denotes a threshold thatcan be used to reject unreliable component velocity measurements. A second constraint on theamplitude of response is also used to ensure a reasonable signal-to-noise ratio. As currently



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 7formulated Fleet and Jepson's method does not provide con�dence measures. Finally, giventhe stable component velocity estimates from the di�erent �lter channels, a linear velocitymodel is �t to each local region. To ensure that there is su�cient local information for reliablevelocity estimates, they introduce further constraints on the conditioning of the linear systemand on the residual LS error.The class of phase-based approaches can also be generalized to include zero-crossingmethods12;13;22;41, since zero-crossings can be viewed as level phase-crossings. For exam-ple, Waxman, Wu and Bergholm41 apply spatiotemporal �lters to binary edge maps to trackedges in real-time. They apply a number of �lters based on Gaussian envelopes and theirderivatives to edge maps of an image sequence and derive velocity for ratios of the �lters'responses.2.3 Matching TechniquesAccurate numerical di�erentiation may be impractical because of noise, because a small num-ber of frames exist or because of aliasing in the image acquisition process. In these casesdi�erential/frequency approaches may be inappropriate and it is natural to turn to matchingtechniques. Region-based matching3;28;29 and feature-based matching4 are two approaches.Region-based matching methods de�ne velocity v as the shift d = (dx; dy) that yields the best�t between image regions at di�erent times. Finding the best match amounts to maximizing asimilarity measure (over d), such as the normalized cross-correlation or minimizing a distancemeasure, such as the sum-of-squared di�erence (SSD):SSD1;2(x; d) = nXj=�n nXi=�nW (i; j) [I1(x+ (i; j))� I2(x+ d+ (i; j))]2= W (x) � [I1(x)� I2(x+ d)]2 ; (2.16)where W denotes a discrete 2-d window function, and d = (dx; dy) take on integer values.There is a close relationship between the SSD distance measure, the cross-correlationsimilarity measure, and di�erential techniques. Minimizing the SSD distance amounts tomaximizing the integral of product term I1(x)I2(x+ d). Also, the di�erence in (2.16) can beviewed as a window-weighted average of a �rst-order approximation to the temporal derivativeof I(x; t).Matching techniques reported by Anandan3 and Singh35 are based on a Laplacian pyra-mid and a coarse-to-�ne SSD-based matching strategy. The Laplacian pyramid11 allows thecomputation of large displacements between frames and helps to enhance image structure.The pyramid image structure also yields considerable computational savings. Measures ofprinciple curvature3 or eigenvalues of a covariance matrix35 served as con�dence measures.3 Performance AnalysisWe have conducted a performance analysis of nine di�erent optical ow techniques5 thatincludes instances of the three classes of optical ow presented above. For a number ofsynthetic image sequences (for which the correct ows are known) and real image sequences(for which the correct ows are unknown) we analyzed these techniques with respect to theaccuracy, density of ow and computational e�ciency. In table 1.1 we show a set of errorresults for the Yosemite Fly Through sequence for a number of techniques described in5.Since the image sequences were all appropriately sampled with small motions (typically 1-4



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 8pixels/frame) conditions were favourable for di�erential approaches. For example, we did notconsider stop-and-shoot sequences14; in fact, only matching techniques would be appropriatehere for this type of data due to their robustness with respect to aliasing. We found Fleet andJepson's phase-gradient based method16 produced the best quantitative results overall withLucas and Kanade's intensity-gradient based method30 being second. Lucas and Kanade'smethod was signi�cantly more e�cient than Fleet and Jepson's method and in additionprovided good con�dence measures36. Matching (correlation-based) techniques were not asgood, the error depended on how close the motion was to an integer number of pixels per frame,that is, these techniques had di�culty in measuring subpixel motions. Matching techniquesare obviously more suitable for larger motions and aliased (under sampled) image sequences(the coarse-to-�ne processing in a Gaussian or Laplacian pyramid yield these properties),which we did not test. The optical ow programs and data used in this study are availablevia ftp (ftp to ftp.csd.uwo.ca and cd to pub/vision) and comparative results are beingreported in current conferences.Technique Average Standard DensityError DeviationHorn and Schunck (original) 31:69� 31:18� 100%Horn and Schunck (modi�ed) 9:78� 16:19� 100%Horn and Schunck (modi�ed) jjrIjj � 5:0 5:59� 11:52� 32.9%Lucas and Kanade (�2 � 1:0) 4:28� 11:41� 35.1%Uras et al. (unthresholded) 8:94� 15:61� 100%Nagel 10:22� 16:51� 100%Nagel jjrIjj2 � 5:0 6:06� 12:02� 32.9%Anandan 13:36� 15:64� 100%Singh (Step 1, n = 2, w = 2) 15:28� 19:61� 100%Singh (Step 2, n = 2, w = 2) 10:44� 13:94� 100%Heeger 11:93� 23:16� 44.8%Waxman et al. �f = 2:0 20:05� 23:23� 7.4%Fleet and Jepson (� = 1:25) 5:28� 14:34� 30.6%Fleet and Jepson (� = 2:5) 4:63� 13:42� 34.1%Table 3.1: Summary of Yosemite 2-d Velocity ResultsMore recently, we examined the use of reconstruction (warping) error as a quantitativeerror metric for those ows where the correct ow �elds are unknown27. Given a computedoptical ow �eld for some image we use it to reconstruct the next image in the sequenceand then compute the RMS di�erence between the actual next image and its reconstructedversion. We found that several backward and forward reconstruction methods using bicubicinterpolation on Gaussian smoothed or con�dence measure weighted velocity �elds providedthe best correlation between quantitative and RMS errors for synthetic images sequences (thereader is directed to a paper27 for full details). Reconstruction error was then used to providea quantitative error metric for real image sequences with unknown correct ow.4 Problems and Current Research DirectionsStill, several major problems remain:



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 9� Acquisition of image sequences using conventional video cameras typically exhibit tem-poral aliasing. The velocities are often larger than 10 pixels/frame, and there is only aminimal amount of temporal blurring. In addition, as there is usually little mechanicalstabilization, the motion often varies radically from frame to frame.� Lighting e�ects can also be a problem in many image sequences. Constant scene illumi-nation and Lambertian reectance are assumed for most current optical ow methods(inherent in the use of (2.2)). Highlights, shadows, transparency, and varying illumina-tion, have only been studied to a limited degree.� Finally, occlusion remains a very di�cult problem, especially for small fragmented ob-jects such as bushes or trees.Some reectance phenomena, for example transparency, can lead to multiple motions.This can usually be dealt with using some of the approaches to occlusion (segmentation)described below.4.1 Warping and Coarse-to-Fine StrategiesOne way to deal with large erratic displacements is to dispense with larger amounts of tem-poral �ltering, and instead use coarse-to-�ne control strategies and image warping in orderto keep the image su�ciently well registered at the scale of interest where simple forms ofnumerical di�erentiation remain reasonably accurate3;8;35. Bergen et al.8 proposed a hierar-chical framework that uni�es several di�erent model-based ow methods. Using an a�ne owmodel in an image region allows one both to judge the quality of that model's �t to the data(perhaps splitting the region if necessary) and to �ll in sparse ow �elds using the computeda�ne parameters. Multiple motions can also be thought of as a set of velocity layers, eachdescribing a particular motion39.Such modi�cations to the basic framework appear to be suitable for large regions of theimage. But the tracking of small target moving over longer distances within this frameworkis still often problematic.4.2 Motion SegmentationAnother current theme in current research on ow concerns the notion of segmentation inthe face of occlusion and transparency. Attempts to estimate discontinuous motion can beclassi�ed into two groups. The �rst group consists of binary line processes19 that explicitlyrepresent intensity discontinuities, for example by breaking the smoothness constraint at pixelshaving a large spatial gradient10;26. Another class of methods iteratively decomposes the sceneinto di�erent objects, by �rst �tting a single model, then �nding regions inconsistent withthe origin �t. These inconsistent regions then becomes starting points for another singlemotion model, from which regions of large deviation can be extracted, etc. A variation onthis theme involves the use of mixed velocity distribution models24;34 to �nd several velocitiessimultaneously in a given region of the image. Here the less dominant motions are initiallytreated as outliers. Mixed velocity models are also appropriate for measuring transparentmotions. Fleet and Jepson's method is capable of measuring component velocities but nomeans is provided for segmenting the component velocities into the two or more full velocitieseach of the component velocities belong to.



AIICSR, Bratislava, Slovakia, Sept. 1994, pp3-14 105 Plant Growth: An Application of Optical FlowWe used the optical ow method attributed to Lucas and Kanade30 with some of the modi-�cations proposed by Simoncelli et al.36 plus some additional thresholding criteria stated inBarron and Liptay7 to measure the growth rate of a corn seeding using optical ow. Weused a Sony colour camera with non-square pixels: each pixel was 9:8� 10�6 meters high and8:4 � 10�6 meters wide. We scaled all horizontal components of velocity by 8:49:8 to take thisinto account. We used a YIQ colour to grayvalue transformation (each pixel of a grayvalueimage was computed as 0.299, 0.587 and 0.114 respectively of the corresponding red, greenand blue pixels of a colour image) to convert the images into grayscale images. Constantspatio-temporal scene illumination was maintained during the growth sequence by using u-orescent lighting and blocking the windows of the experimental room to ensure the room wasdevoid of natural light. Constant scene illumination ensures there are no non-zero intensityderivatives not due to motion and hence no detection of false motion. Surface reectivitywas minimized by using a black rayon velvet cloth as the scene's background. The camerawas placed in close proximity to the front of the seedling to ensure su�cient textural detailwas captured by image acquisition. The temporal sampling was 2 minutes per frame and wasempirically determined. We employed both eigenvalue thresholding5 and similarity thresh-olds (local velocities should be similar and upwards)7 to remove outlier velocities. Figure 5.1shows one image of the sequence plus the computed normal and thresholded full image veloc-ity �elds. The average rate of growth for this image was 1:982� 10�7� 8:9393� 10�9 metersper second. An experiment using optical ow to measure plant growth while the plant's roottemperature was varied showed that there was good correlation between root temperatureand growth rate.
(a) Corn Seedling (b) Normal Flow (c) Full FlowFigure 5.1: An image of the corn seedling sequence and its normal and full optical ow�elds. The corn seedling's root temperature was 24�C, the normal and full ow �elds weresampled by 2 and scaled by 50.0. The ows were computed using balanced smoothing anddi�erentiation. The full ow (c) was computed from neighbourhoods of local normal ow (b)and then thresholded as described in Barron and Liptay7.Acknowledgements This work has been supported in part by NSERC Canada, the Gov-
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