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Abstract

According to the WHO (World Health Organization),
world-wide deaths from injuries are projected to rise from 5.1
million in 1990 to 8.4 million in 2020, with traffic-related inci-
dents as the major cause for this increase. Intelligent, Advanced
Driving Assistance Systems (i-ADAS) provide a number of
solutions to these safety challenges. We developed a scalable
in-vehicle mobile i-ADAS research platform for the purpose
of traffic context analysis and behavioral prediction designed
for understanding fundamental issues in intelligent vehicles.
We outline our general approach and describe the in-vehicle
instrumentation. We present a number of research challenges
and early results, as we outline future directions.

I. I NTRODUCTION

Driving is an essential aspect of our economy which
directly or indirectly impacts a number of critical eco-
nomic factors. In North America, there were 6 million
accidents, 1.7 million injuries, and 39,000 fatalities in
2006 [1]. Yet the simplest of driving assistance systems
such as enhanced stability control (ESC) may reduce
single-vehicle crashes by 29 to 35 percent [2]. Even with
low penetration levels (5 to 10 percent), the safety of
every vehicle increases. In addition, vehicle curb weight
is a significant fuel consumption factor. Hypothetically,
a crash-less car could be made much lighter without
endangering its occupants. As of today, such vehicles
cannot be manufactured due to enforced crash-safety
ratings. Compounding the problem, traffic congestion is a
growing problem world-wide as car ownership continues
to skyrocket. In a typical congestion situation, an air-view
of the traffic reveals that vehicles occupy only roughly
10 percent of the available pavement. ADAS technologies
could improve this radically by automating longitudinal
vehicle control, for instance. Such systems could increase
the density of traffic with vehicles following each other
closely and safely, alleviating the need to extend current
highway infrastructures [3]. Also of significance is the
fact that the average age in western countries is on the
rise. While this should not be a problem unto itself, it has
nonetheless been established that a decline in cognitive

and motor abilities impacts the safety of drivers and others
around them [4], [5].

In this contribution we address the physical design
and implementation of an in-vehicle laboratory for the
development of i-ADAS. Our approach, while sharing
common elements with those of others, is unique in
several ways. First, we designed a portable instrumenta-
tion requiring no modification to the vehicular platform,
using low-cost off-the-shelf components that are widely
available. Second, our on-board computational approach
rests on scalability. That is to say, additional computing
power can easily be added to the current instrumentation,
without any modifications to the existing system. This of
course is a core requirement, as algorithms must be run
in real-time. Third, our approach integrates the driver in
the system as an inherent behavioral agent, in the aim of
understanding and predicting driving actions.

II. RELATED L ITERATURE

While injuries per driven kilometer are in decline in
developed countries [1], a reverse trend can be observed
elsewhere in the world, especially in regions where car
ownership is rising quickly. In addition, further significant
gains in traffic safety in developed countries seem only
possible via ADAS, since the impact of other forms of
safety improvements have begun to plateau [6].

Advanced Driving Assistance Systems are generally
designed to support decision making by providing er-
gonomic information on the driving environment, such as
the presence of surrounding vehicles, potential hazards,
and general traffic conditions. A large array of sensing
devices and data fusion strategies have been devised
and deployed to create effective ADAS. Sensing may be
performed with radar [7], [8], lidar [9], or laser range
finders [10]. However a majority of ADAS rely principally
on vision systems supported by other sensor modes [11].
With such a variety of sensor modalities and hard real-
time constraints, fusion becomes central to ADAS and
the current literature reflects this fact in the large num-
ber of contributions that approach data and knowledge
fusion in this context [12], [7], [13], [14]. Alternatively,
several functions of ADAS may be realized using vehicle-
to-vehicle (V2V) wireless communication protocols and
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Global Positioning Systems (GPS). Examples include the
diffusion of traffic information, [15], [16], collision warn-
ing systems [17], [18], lane changing assistance [19], and
tracking neighboring vehicles [20].

While research on ADAS may integrate a number of
different functions such as forward collision detection and
lane departure tracking [21], little attention is devoted to
the monitoring of events and factors that directly concern
the driver of the vehicle. It is only recently that cognitive
aspects have been considered as a legitimate part of
intelligent ADAS [22]. Since 95 percent of all accidents
are caused by human error, it is crucial that these aspects
of driving be a central part of intelligent ADAS [23].
Keeping the driver as an active participant in the feedback
mechanisms allows for providing contextually motivated
informational support and offers immediate applications
for enhancing safety [24].

The extended possibilities of integrated, intelligent
ADAS are very relevant research areas as they do not
intend to replace the driver as much as to assist in the
process of driving safely. As it has been pointed out
by Peterssonet al. [24], what remains to be automated
to reach the state by which vehicles become completely
autonomous in a practical manner turns out to be difficult
and elusive in everyday driving situations. In light of this,
it is our belief that driver support through i-ADAS can be
deployed more readily, with consequent socio-economic
benefits.

III. L AYERED APPROACH TOINTELLIGENT VEHICLES

The next generation of i-ADAS will require exten-
sive data fusion and analysis processes owing to an ever
increasing amount of available vehicular information. In
this context a layered approach is best suited for real-
time processing. In particular, such an approach enables
bringing real-time data from sensors to a common level
of compatibility and abstraction which significantly facil-
itates fusion and analysis processes. Our proposed com-
putational model consists of four layers, with increasing
levels of data abstraction (see Figure 1). The innermost
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Fig. 1. The four layers comprising the data processing strategy
on-board the instrumented vehicle.

layer consists of the hardware and software required to
capture vehicle odometry, sequences from visual sensors,
and driver behavioral data. The second layer pertains
to hardware synchronization, calibration, real-time data
gathering, and vision detection processes. The third layer

is where the data is transformed and fused into a single
4-dimensional space(x, y, z, t). The last layer makes use
of the fused data to compare driver behavioural data with
models of behaviour that are appropriate given current
odometry and traffic conditions.

A. Instrumentation

Contemporary vehicles equipped with On-Board Di-
agnostic systems (OBD-II) allow vehicle sensors to report
on current status, and constitute the interface through
which odometry is made available in real-time. Since
2008, the CANbus protocol1 has become mandatory for
OBD-II. This standardization simplifies the real-time cap-
ture of vehicle data. OBD-II to USB hardware interfaces
with appropriate drivers are now common devices used
to feed vehicle-related information to on-board computers
or similar devices. The available information relevant to i-
ADAS applications include current speed and acceleration
(longitudinal and lateral), steering wheel rotation, state
of accelerator and brake pedals, and independent wheel
speed, which are real-time data captured at frequencies
generally comprised between 20 and 200Hz. These ele-
ments provide the information that is required to under-
stand the maneuvers effected by the driver.

In addition, several vision systems must instrument
the vehicle in order to appropriately monitor the immedi-
ate environment (lanes, other vehicles, pedestrians, obsta-
cles, etc) and the behavior of the driver (gaze direction,
level of attention, etc). These hardware systems must be
capable of high sampling rates (30Hz or more) such that
sufficient accuracy in image processing and automated
vision processes is achieved. It is useful to keep in mind
that the position of a vehicle moving at 120 kph changes
by 33 meters every second.

Similar observations apply concerning the changes
in visual gaze direction (known as saccades) as they occur
very rapidly. For this reason, vision hardware monitoring
the gaze direction of the driver must have sufficiently
dense sampling rates as to allow for deriving driver
intentionality prior to the execution of the anticipated
behavior [25]. This part of the vehicle instrumentation is
realized with commercial hardware and software2 from
which data such as eye gaze direction, vergence distance,
and saccade events are obtained at a frequency of 60Hz.

Also part of the instrumentation layer is a GPS de-
vice which is used by Vehicle-to-Vehicle (V2V) commu-
nications systems to provide other near-by instrumented
vehicles with knowledge of traffic conditions beyond the
range of their visual sensors.

Last but not least, on-board computing capabilities
must also be sufficient to process the sum of incoming
data in real-time. To this end we have designed and

1The CANbus (Controller Area Network bus) provides micro-
controllers with the means to communicate with each other within a
vehicle.

2FaceLAB5
TM implements our instrumentation for eye tracking.
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assembled a computer for real-time data processing and
fusion consisting of 16 cores, each running at 3.0GHz,
with 16GB of internal memory and a 128GB Solid State
Drive (SSD), with Linux Debian 5.01 as the operating
system. The nodes are networked with a high-end gigabit
network switch, and configured as a disk-less cluster, with
the master node providing the operating system image to
other nodes.

B. Device-Level Data Processing

For visual sensors, it is critical to obtain precise
calibration parameters such as lens distortion, the optical
center, and the external orientation of sensors with respect
to each other. This calibration is required to perform
stereo and to estimate distances of objects (other vehicles,
pedestrians, etc.), which in turn greatly simplifies other
vision-related tasks such as estimating motion, tracking,
and obstacle detection. The RoadLab stereo calibration
interface was designed for this process (see Figure 2).
The interface is implemented using a calibration algorithm
from the OpenCV 2.1 open source library based on
Zhang’s technique [26]. The calibration process consists of
two steps. Intrinsic parameters are first estimated for each
sensor and then, based on these, the extrinsic parameters
for all possible sensor pairs are obtained. It is also possible
to estimate the extrinsic parameters dynamically [27]. All
the image frames from visual sensors are synchronized to
within 125µs. Once the synchronized frames are obtained,
stereo depth maps are computed at frame rate, based on
the calibration parameters (see Figure 3).

Fig. 2. The RoadLab stereo calibration interface collects
sequences of images of a calibration pattern, each with a
different orientation. Both intrinsic and extrinsic parameters are
estimated.

The GPS data is obtained throughgpsd, a GPS
service daemon fromhttp://gpsd.berlios.de/
which provides an event-driven architecture. The data
from the OBD-II/CANbus is obtained in a similar manner
by creating a software layer for this purpose. Addition-
ally, the incoming data from the instrumentation provides
timestamps, allowing the system to fuse and select data
elements in a synchronized fashion.

C. Data Fusion and Integration

Streams of data and video frames coming from mon-
itoring the driver, the environment, and vehicle odometry

must be placed in a suitable context for use by the behav-
ioral prediction engine. We define a driver-centered frame
of reference, in which elements of the Cognitive State of
Driver (CSD) descriptor (head pose, gaze direction, blink
events, lip movement), the Contextual Feature Set (CFS)
descriptor (road lanes, other vehicles, pedestrians, etc),
and the Vehicle State of Odometry (VSD) are transformed
into, from their local sensor frames of reference (see Fig-
ure 4 for a depiction of the CSD and CFS descriptors in the
context of our layered model). This is performed by using
the extrinsic parameters obtained with the calibration of
the visual sensors with respect to each other. With these
elements fused into a single frame of reference, the current
CSD, CFS, and VSO descriptors are updated at 30Hz, and
made available to the behavioral prediction engine.

Two modes of operation exist at this level. A
recording mode captures the data and video streams from
the instrumentation for in-laboratory, off-line analysis. A
processing mode which performs as an i-ADAS operating
in real-time is also possible. Each sequence generated for
off-line analysis obeys a strict format standard, in which
the calibration data, the timestamped frames from the
stereo systems, and the vehicle odometry are recorded at
30Hz.

D. Predictive Behavioral Model

Our general hypothesis stems from research demon-
strating that eye movements reflect moment-to-moment
cognitive processes used to locate the information needed
by the motor system for producing actions in relation to
the environment [25], [28], [29]. This hypothesis is the
foundation for our conjecture stating that the analysis of
driver gaze direction (and other facial features) fused with
the knowledge of the environment surrounding the vehicle
(and its odometry) lead to the possibility of predicting
driving behavior for short time frames (a few seconds). To
accomplish these goals, it is necessary to infer a behavioral
driving agent model that puts in relation the cognitive state
of the driver, the vehicle odometry, and its surrounding
environment as captured by sensors. For this purpose,
we devise a Real-Time Descriptor (RTD) for a moving
vehicle essentially consisting of a CFS, a CSD, and a VSO
descriptor.

These elements represent the knowledge required
in composing an extensive RTD suited for our purposes.
While we are interested in deriving practical and predic-
tive driving agent models, it is worth noting that both the
CFS and the VSO possess predictive models which are
less difficult to formulate. We further propose to structure
the elements of the RTD within a retroactive mechanism
(see Figure 4) in which both the current and predicted
descriptors (CSD, CFS, and VSO) assist in determining
not only the safety level of the context derived from the
current RTD, but also that posed by the predicted RTD.

At the heart of the behavioral prediction engine is
a Bayesian model which takes the current CSD, CFS,
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Fig. 3. Color-coded calibrated stereo depth maps are obtained at 30Hz. The distance between the instrumented vehicle and the roadside
curbs, and other vehicles, is estimated in real-time.
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Fig. 4. A description of the retroactive mechanism operating between the current and predicted RTDs with respect to the outlined layered
approach, in which driving assistance impacts both the current and predicted behavioral state of the driving agent.

and VSO as inputs and predicts actuation behavior of the
driver in the next few seconds. It also gathers statistical
information about driving decisions and errors in a Driver
Statistical Record (DSR) which can be used over time to
improve the prediction accuracy. The current CSD and
CFS are in turn used to establish a Driver Memory of
Surroundings (DMS) based on the attention level and gaze
direction analysis of the driver. A General Forgetting Fac-
tor (GFF) is applied to the DMS as time elapses to reflect
common characteristics of short-term visual memory. In
addition, a Driver Cognitive Load factor (DCL) is inferred,
based on the activities engaged by the driver, which in turn
impacts the DMS, among other things.

IV. I N-VEHICLE LABORATORY

The design of the instrumented vehicle follows
principles of sensor portability and computing scalability.
Sensor portability is achieved by using vacuum devices
to attach the instrumentation equipment to the the interior
glass surfaces of the vehicle (see Figure 5), such as stereo
camera rigs, LCD screens, and GPS units without the
need to perform permanent modifications to the vehicle.
The odometry is obtained from the OBD-II outlet located
under the dashboard on the driver’s side of the vehicle.

Each minute, the sensory equipment sends 2 to
6GB of data to the on-board computer. With such large
amounts of data to process, the computing equipment
was designed with scalability as a guiding principle. For

this purpose, A disk-less cluster arrangement was chosen
essentially to provide the option of adding computing
nodes as necessary. Currently, the on-board computer is
composed of 16 computing nodes distributed over four
boards networked with a gigabit switch. The nodes and the
switch are contained inside a portable server case which
in turn can be installed on the back seat or in the trunk
of the vehicle.

The computer and instrumentation are powered with
a 1500W inverter connected directly to the battery of
the vehicle. The instrumentation can be run continually
without battery drainage.

V. RESEARCHCHALLENGES

The hardware and software instrumentation of the
research vehicle provides the foundation for addressing
relevant questions pertaining to driving and its associated
risks, such as:

• assessing the cognitive state of drivers in order to
predict maneuvers within a defined time frame;

• supporting driver decisions by providing advance
information and warnings that are related to the
context of current and predicted maneuvers along
with traffic conditions in an ergonomically acceptable
fashion;

• analyzing long-term driving patterns in ways as to
understand the most common causes of driving errors
[30];
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Fig. 5. The RoadLab in-vehicle laboratory:a) (left): on-board computer and LCD screen,b) (center): dual stereo front visual sensors,c) (right): side
stereo visual sensors.

• determining what constitutes an acceptable Human
Machine Interface (HMI) which minimizes driver
distractions;

• developing short range vehicular networking tech-
nologies to relay traffic information and to augment
the effective range of on-board sensors.

In addition to researching these fundamental aspects of ad-
vanced driving assistance systems, our current in-vehicle
research platform enables us to test and validate retroac-
tive models consisting of current and predicted RTDs and
their core descriptors (CSD, CFS, and VSO).

VI. CONCLUSION AND DIRECTIONS

We have developed a vehicle-independent, portable
and scalable in-vehicle instrumentation for i-ADAS. Our
motivation to develop this in-vehicle research platform
stems from the observation that while injuries per driven
kilometer are in decline in developed countries, a re-
versed trend can be observed elsewhere in the world
[1]. Technologies such as i-ADAS have the potential to
significantly reduce the burden of vehicle accidents and
their consequences.

REFERENCES

[1] N. H. T. S. Administration, “Traffic safety facts 2006: A compila-
tion of motor vehicle crash data from the fatality analysis reporting
system and the general estimates system,” U.S. Department of
Transportation, Tech. Rep. DOT HS 810 818, 2006.

[2] S. Ashley, “Crashless cars: Making driving safer,”Scientific Amer-
ican, December 2008.

[3] A. Bose and P. Ioannou, “Analysis of traffic flow with mixed
manual and intelligent cruise control vehicles: Theory and exper-
iments,” California Partners for Advanced Transit and Highways,
Tech. Rep. UCB-ITS-PRR-2001-13, 2001.

[4] K. Ball, C. Owsley, B. Stalvey, D. Roenker, M. Sloane, and
M. Graves, “Driving avoidance and functional impairment in older
drivers,” Accid. Anal. Prev., vol. 30, no. 3, pp. 312–322, 1998.

[5] G. McGwin and D. Brown, “Characteristics of traffic crashes
among young, middle-aged, and older drivers,”Accid. Anal. Prev.,
vol. 31, no. 3, pp. 181–198, 1999.

[6] P. Blythe and A. Curtis, “Advanced Driver Assistance Systems:
gimmick or reality?” in 11th World Congress on ITS, Nagoya,
2004.

[7] U. Hofmann, A. Rieder, and E. Dickmanns, “Radar and vision data
fusion for hybrid adaptive cruise control on highways,”Machine
Vision and Applications, vol. 14, no. 1, pp. 42–49, 2003.

[8] G. Widmann, M. Daniels, L. Hamilton, L. Humm, B. Riley,
J. Schiffmann, D. Schnelker, and W. Wishon, “Comparison of
lidar-based and radar-based adaptive cruise control systems,”SAE
Technical Paper Series 2000-01-0345, 2000.

[9] A. Huang, D. Moore, M. Antone, E. Olson, and S. Teller, “Finding
multiple lanes in urban road networks with vision and lidar,”
Autonomous Robots, vol. 26, no. 2, pp. 103–122, 2009.

[10] B. Ma, S. Lakshmanan, and A. Hero, “Simultaneous detection
of lane and pavement boundaries using model-based multisensor
fusion,” IEEE Transactions on Intelligent Transportation Systems,
vol. 1, no. 5, pp. 135–147, 2000.

[11] J. McCall and M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 7,
no. 1, pp. 20–37, 2006.

[12] N. Kawasaki and U. Kiencke, “Standard platform for sensor fusion
on advanced driver assistance system using Bayesian network,” in
IEEE Intelligent Vehicles Symposium, 2004, pp. 250–255.

[13] D. Caveney, B. Feldman, and J. Hedrick, “Comprehensive frame-
work for multisensor multitarget tracking in the adaptive cruise
control environment,” inProceedings of International. Symposium
on Advanced Vehicle Control, Tokyo: Society of Automotive Engi-
neers of Japan, 2002, pp. 697–702.

[14] Y. Zhu, D. Comaniciu, V. Ramesh, M. Pellkofer, and T. Koehler,
“An integrated framework of vision-based vehicle detection with
knowledge fusion,” inIEEE Intelligent Vehicles Symposium, 2005,
pp. 199–204.

[15] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “Trafficview:
Traffic data dissemination using car-to-car communication,”ACM
Sigmobile Mobile Computing and Communications Review, vol. 8,
no. 3, pp. 6–19, 2004.

[16] N. Shibata, T. Terauchi, T. Kitani, K. Yasumoto, M. Ito, and T. Hi-
gashino, “A method for sharing traffic jam information using inter-
vehicle communication,” in3rd Annual International Conference
on Mobile and Ubiquitous Systems, 2006, pp. 1–7.

[17] J. Huang, H. Tan, and M. Warren, “Design and implementation
of a cooperative collision warning system,” inIEEE Intelligent
Transportation Systems Conference, 2006, pp. 1017–1022.

[18] H. Tan and J. Huang, “DGPS-based vehicle-to-vehicle coopera-
tive collision warning: Engineering feasibility viewpoints,”IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 4,
pp. 415–428, 2006.

[19] S. Ammoun, F. Nashashibi, and C. Laurgeau, “An analysis of the
lane changing maneuver on roads: the contribution of inter-vehicle
cooperation via communication,” inIEEE Intelligent Vehicles Sym-
posium, 2007, pp. 1095–1100.

[20] S. Rezaei, R. Sengupta, H. Krishnan, X. Guan, and R. Bhatia,
“Tracking the position of neighboring vehicles using wireless
communications,”Transportation Research Part C, 2009.

[21] J. Liu, Y. Su, M. Ko, and P. Yu, “Development of a Vision-
Based Driver Assistance System with Lane Departure Warning and
Forward Collision Warning Functions,”Computing: Techniques
and Applications, pp. 480–485, 2008.

[22] M. Rockl, P. Robertson, K. Frank, T. Strang, and G. Center, “An

11



architecture for situation-aware driver assistance systems,” in IEEE
65th Vehicular Technology Conference, vol. 4, 2007, pp. 2555–
2559.

[23] Y. Umemura, “Driver behavior and active safety,”R&D Review of
Toyota CRDL - Special Issue, 2004.

[24] L. Petersson, L. Fletcher, and A. Zelinsky, “A framework for driver-
in-the-loop driver assistance systems,”IEEE Intelligent Transporta-
tion Systems, pp. 771–776, 2005.

[25] M. Land, “Eye movements and the control of actions in everyday
life,” Progress in Retinal and Eye Research, vol. 25, no. 3, pp.
296–324, 2006.

[26] Z. Zhang, “A flexible new technique for camera calibration,”IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[27] J. Collado, C. Hilario, A. de la Escalera, and J. Armingol, “Self-
calibration of an on-board stereo-vision system for driver assistance
systems,” inIEEE Intelligent Vehicle Symposium, Tokyo, Japan,
2006, pp. 156–162.

[28] K. Ker, I. Roberts, T. Collier, F. Beyer, F. Bunn, and C. Frost, “Post-
license driver education for the prevention of road traffic crashes;
a systematic review of randomized controlled trials,”Accid. Anal.
Prev., vol. 37, no. 2, pp. 305–313, 2005.

[29] K. Rayner, “Eye movements in reading and information processing:
20 years of research,”Psychological Bulletin, vol. 124, no. 3, pp.
372–422, 1998.

[30] S. Beauchemin, P. Varcheie, L. Gagnon, D. Laurendeau,
M. Lavallière, T. Moszkowicz, F. Prel, and N. Teasdale, “Cobvis-
d: A computer vision system for describing the cephalo-ocular
behavior of drivers in driving simulators,” in6th International
Conference on Image Analysis and Recognition, July 2009, pp.
604–615.

12




