
Non-Fourier Motion in The Fourier SpectrumSteven S. BeaucheminGRASP LaboratoryDepartment of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphia PA 19104-6228Abstract Typically, image motion analysis in the fre-quency domain is performed according to the MotionFrom Fourier Coe�cients, or MFFC principle. How-ever, this principle excludes a class of motion that doesnot generate power spectra containing the origin of thefrequency domain, which is usually referred to as Non-Fourier motion. This type of motion includes phenom-ena relevant to motion analysis such as translucency,sinusoidal beats, occlusion, Theta motion, and lacksa de�nitive theoretical framework. We address thisproblem by deriving exact mathematical expressions forNon-Fourier motion, thus providing a basis for compu-tational models for velocity extraction in the frequencydomain. Numerical experiments demonstrating the va-lidity of the approach are also presented.Keywords: Image motion, Optical ow, Fourier trans-form, Non-Fourier motion1 IntroductionTraditionally, motion perception has been equatedwith orientation of power in the frequency domain.The many optical ow methods use what Chubb andSperling term the Motion-From-Fourier-Components(MFFC) principle [1] in which the orientation of theplane or line through the origin of the frequency spacethat contains most of the spectral power gives the rateof image translation.The MFFC principle states that for a moving stim-ulus, its Fourier transform has substantial power oversome regions of the frequency domain whose points spa-tiotemporally correspond to sinusoidal gratings withdrift direction consonant with the perceived motion[1]. In addition, current models of human perceptioninvolve some frequency analysis of the imagery, suchas band-pass �ltering and similar processes. However,some classes of moving stimuli which elicit a strong per-cept in subjects fail to show a coherent spatiotemporalfrequency distribution of their power and cannot be un-

derstood in terms of the MFFC principle.Examples include drift-balanced visual stimuli [1],Fourier and Non-Fourier plaid superpositions [4], am-plitude envelopes, sinusoidal beats and various multi-plicative phenomena [2]. By drift-balanced it is meantthat a visual stimulus with two (leftward and rightward,for example) or more di�erent motions shows identicalcontents of Fourier power for each motion and there-fore, according to the MFFC principle, should not elicita coherent motion percept. However, some classes ofdrift-balanced stimuli de�ned by Chubb and Sperlingdo elicit strong coherent motion percepts, contrary tothe predictions of the usual MFFC model.Sources of Non-Fourier motion also include the mo-tion of texture boundaries and the motion of motionboundaries. For instance, transparency as consideredby Fleet and Langley [2] is an example of Non-Fouriermotion, as transparency causes the relative scatteringof Fourier components away from the spectrum of themoving stimuli. In addition, occlusion is another ex-ample of Non-Fourier motion which is closely relatedto the Theta motion stimuli of Zanker [5], where theocclusion window moves independently from both theforeground and the background, thus involving threeindependent velocities.It has been observed by Fleet and Langley thatmany Non-Fourier motion stimuli have simple charac-terizations in the frequency domain, namely power dis-tributions located along lines or planes which do notcontain the origin of the frequency space, as requiredby the MFFC idealization [2]. We develop exact fre-quency representations for several non-Fourier motionsand state their properties with respect to image motion.1.1 MethodologyTo analyze the frequency structure of image signalswhile preserving representations that are as general aspossible, an e�ort is made to only pose those hypothe-ses that preserve the generality of the analysis to follow.We describe the assumptions and the techniques with



which the theoretical results were obtained.Image Signals The geometry of visual scenes underperspective projection generally yields complex im-age signals. Conceptually, assumptions concerningscene structure should not be made, as they con-strain the geometry of observable scenes. In addi-tion, any measured physical signal, such as imageintensities, satis�es Dirichlet conditions. Such sig-nals admit a �nite number of �nite discontinuities,are absolutely integrable and may be expandedinto complex exponential series. Dirichlet condi-tions constitute the sum of assumptions made onimage signals.Mathematical Technique The results established inthis analysis emanate from a general approach tomodeling visual scenes exhibiting non-Fourier mo-tion. In the case of occlusion, an equation whichdescribes the spatio-temporal pattern of the super-position of a background and an occluding signal isestablished, in which a characteristic function de-scribing the position of an occluding signal withinthe imaging space of the visual sensor is de�ned:�(x) = � 1 if x within occluding signal0 otherwise. (1)Two image signals I1(x) and I2(x), correspondingto the occluding and occluded signals respectively,are de�ned to form the complete signal pattern:I(x; t) = �(v1(x; t))I1(v1(x; t))+ [1� �(v1(x; t))] I2(v2(x; t)); (2)where vi(x; t) is velocity. Alternatively, scenes oftranslucency are modeled asI(x; t) = f(�1)(v1(x; t))I2(v2(x; t)); (3)where f(�1) is a function of the density of thetranslucent material.Hypotheses made on the components of (2) and (3)are inserted and the structure of the correspond-ing non-Fourier motions in frequency space are de-veloped. That is to say, signal structures are ex-panded into complex exponential series, such as:Ii(x) = ~1Xn=� ~1 cineixTNki ; (4)where Ii(x) is the ith intensity pattern, cin arecomplex coe�cients, ki are fundamental frequen-cies, nT = (n1; n2; : : : nn) are integers and N =nT I .

Relevance of Fourier Analysis It has been conjec-tured that Non-Fourier spectra have mathemati-cally simple characterizations in Fourier space [2].Consequently, the use of Fourier analysis as a localtool is justi�ed as long as one realizes that it con-stitutes a global idealization of local phenomena.In that sense, Fourier analysis is used as a localtool whenever Gabor �lters, wavelets or local Dis-crete Fourier Transforms are employed for signalanalysis.Experimental Technique Given the theoretical na-ture of this research, the purpose of the numericalexperiments is to verify the validity of the theo-retical results. In order to accomplish this, thefrequency content of the image signals used in theexperiments must be entirely known to the exper-imenter, thus forbidding the use of natural imagesequences. In addition, image signals with singlefrequency components are used in order to facili-tate the interpretation of experiments involving 3DFast Fourier transforms. The use of more complexsignals impedes a careful examination of the nu-merical results and do not extend the understand-ing of the phenomena under study in any particularway.2 Sinusoidal Beats and Translu-cencySinusoidal beats are sums of sinusoidal patterns, eachmoving with a possibly di�erent velocity, and constituteone of the simplest forms of Non-Fourier motion. Asimple beat involving two 1D sinusoids can be expressedas I(x; t) = cos(k1x+ !1t) + cos(k2x+ !2t); (5)which is recognized as a case of additive translucencyinvolving two patterns. The Fourier transform of sinu-soidal beats is straightforward yet does not comply withthe MFFC principle as the frequencies of each patterndo not align to represent an unambiguous motion pat-tern. These types of stimuli have been used to studyvelocity detection thresholds and lead to the hypothe-sis that the human visual system may use a non-Fourierchannel of motion detection [3].Figure 1 shows a superposition of two 1D sinusoidalsand the corresponding Fourier transform. In the con-text of sinusoidal beats, �k and �! are beat frequen-cies and de�ne group velocity as ��!�k . Average frequen-cies �k and �! are carrier frequencies and de�ne carriervelocity as ��!�k .In the case of additive translucency, we express thetranslucent event as (3) and assume a spatially constant



6-t x a) b) c) d)Figure 1: The composition of an additive transparency scene. a): First sinusoidal signal with frequency k1 = 2�8and velocity a1 = 1:0. b): Second sinusoidal signal with frequency k2 = 2�16 and velocity a2 = �1:0. c):Transparency created with the superposition of �rst and second sinusoidal signal. d): Frequency spectrum oftransparency.f(�1) with translucency factor ', leading to a weightedsuperposition of intensity patterns, written asI(x; t) = 'I1(v1(x; t)) + (1� ')I2(v2(x; t)); (6)where I1(v1(x; t)) is the intensity pro�le of the translu-cent material and I2(v2(x; t)) is the intensity pro�le ofthe background. With I1(v1(x; t)) and I2(v2(x; t)) sat-isfying Dirichlet conditions, the frequency spectrum of(6) is written asÎ(k; !) =' ~1Xn=� ~1 c1n�(k�Nk1; ! + aT1 Nk1) +(1� ') ~1Xn=� ~1 c2n�(k�Nk2; ! + aT2 Nk2): (7)In this case, the velocities of interest are those of theindividual signals. Each of them is predicted by theMFFC principle but the sum of their frequencies doesnot allow a direct measurement.3 OcclusionAt an occlusion, the occluding and occluded velocitiescan always be identi�ed as such and, a degenerate oc-cluding signal exhibiting a linear spectrum is supple-mented by the linear orientation of its occluding bound-ary, allowing to determine the full velocity of the oc-cluding signal.Let I1(x) and I2(x) be 2D functions satisfyingDirichlet conditions such that they may be expressedas complex exponential series expansions (3). Also letI1(x; t) = I1(v1(x; t)), I2(x; t) = I2(v2(x; t)) and the

occluding boundary be represented by (4). The fre-quency spectrum of the occlusion isÎ(k; !) =� ~1Xn=� ~1 c1n�(k�Nk1; ! + aT1Nk1)+(1� �) ~1Xn=� ~1 c2n�(k�Nk2; ! + aT2 Nk2)�i ~1;Xn=� ~1� c1n�((k�Nk1)Tn?1 ;kT a1 + !)(k�Nk1)Tn1+ c2n�((k�Nk2)Tn?1 ;kTa1 + ! ��aTNk2)(k�Nk2)Tn1 � (8)where �a = a1�a2. Figure 2 shows the composition ofa simple occlusion scene with 2D sinusoidal signals. TheFourier transform of its various components show thatthe linear spectrum of the occlusion boudary is orientedin a manner that is consonant with the velocity of theoccluding signal. Detecting this orientation amountsto identifying the occluding velocity. In addition, sinceboth the occluding signal and its boundary translatewith identical full velocity, one can disambiguate thenormal velocity of the occluding signal.4 Generalized BoundariesTypically, occlusion boundaries are unconstrained inshape, yielding a variety of occluding situations. Un-der the hypothesis that the motion of the occludingboundary is rigid on the image plane, we can derivethe frequency structure of such events. For instance,consider a generalized occlusion boundary representedby the characteristic function �(x) in the coordinates



6-y x a) b) c) d)
PPq��) 6!kx ky e) f) g) h)Figure 2: (top): The composition of a simple 2D occlusion scene. a) The occluding sinusoidal signal withfrequency ( 2�16 ; 2�16 ) and velocity (�1:0;�1:0). b) The occluded sinusoidal signal with frequency ( 2�8 ; 2�8 ) and velocity(1:0; 1:0). c) The step function used to create the occlusion scene with normal vector (p22 ; p22 ). d) The occlusionas a combination of a), b) and c). (bottom) e) through h): Image plots of corresponding amplitude spectra.of the image plane and the Fourier transforms of thecomplex exponential series expansions of both the oc-cluding and occluded signals I1 and I2. Substitutingthese terms into the Fourier transform of (2) yields thefollowing Fourier spectrumÎ(k; !) =~1Xn=� ~1 c1n�̂(k�Nk1)�(aT1 k+ !)�~1Xn=� ~1 c2n�̂(k�Nk2)�(aT2 k+ ! ��aTNk2) +~1Xn=� ~1 c2n�(k�Nk2; ! + aT2 Nk2); (9)from which it is observed that the spectrum of theoccluding boundary is repeated at every non-zero fre-quency of both signals. The spectrum occupies planesdescriptive of full velocity which can be used to performsuch measurements.5 Theta MotionSources of Non-Fourier motion include such phenomenaas translucency, occlusion and, in particular, Zanker's

Theta motion stimuli which are examples of Non-Fourier motion involving occlusion with various formsof occlusion windows[5]. This category of motion isdescribed by a window that translates with a velocityuncorrelated with those of the occluding and occludedsignals. For 1D image signals, such an occlusion scenecan be expressed asI(x; t) = �(x� v3t)I1(x� v1t)� �(x� v3t)I2(x� v2t)+ I2(x� v2t): (10)As Zanker and Fleet [5, 2], we model the occlusion win-dow with a rectangle function in the spatial coordinateas ��x� x0b � =8>>>><>>>>: 0 if ��x�x0b �� > 1212 if ��x�x0b �� = 121 if ��x�x0b �� < 12 : (11)Such a function is non-zero in the interval ]x0� b2 ; x0+b2 [ and zero otherwise. We can then write the Fouriertransform of the occlusion scene (10) asI(k; !) =K 1Xn=�1 sinc(k � nk1)c1n�(kv3 � nk1�v3)�



6-y x a) b) c) d)Figure 3: Generalized occluding boundaries. a), b) and c): Images from a sequence in which the occluding patternmoves with velocity aT1 = (�1:0;�1:0). Spatial frequency of the sinusoidal texture within the circular boundaryis kT1 = ( 2�16 ; 2�16 ). d): The frequency spectrum of the sequence, where the plane contains the spectrum of theboundary convolved with the frequency of the texture.
6-t x a) b) c) d)Figure 4: Examples of Theta motion. a): Velocities of occlusion window, occluding and occluded signals arev3 = 0:5, v1 = 1:0 and v2 = �2:0 respectively. b): Frequency spectrum of a). c): Velocities of occlusion window,occluding and occluded signals are v3 = �0:5, v1 = �2:0 and v2 = 1:0 respectively. d): Frequency spectrum of c).K 1Xn=�1 sinc(k � nk2)c2n�(kv3 � nk2�v2) +1Xn=�1 c2n�(k � nk2; ! + nk2v2); (12)where sinc(k) = sin kk , �v3 = v3 � v1, �v2 = v2 � v1,andK = b�1e�ikx0b�1 . The spectra �(kv3+!�nk1�v3)and �(kv3+!�nk2�v2) are consonant with the motionof the occluding window and represent a case of Non-Fourier motion, as they do not contain the origin.We performed two experiments with Theta motionsas pictured in Figure 4. It is observed that the spectrumof the sinc function is convolved with each frequencyof both signals and that its orientation is descriptiveof the velocity of the window. As expected, the visi-ble peaks represent the motions of both signals in theMFFC sense.

6 ConclusionWe presented a framework for the Fourier analysis ofnon-Fourier motions which yields exact mathematicalexpressions and forms a basis for computational modelsfor velocity extraction in the frequency domain beyondthe MFFC principle.References[1] C. Chubb and G. Sperling. Drift-balanced randomstimuli: A general basis for studying non-fouriermotion perception. J. Opt. Soc. Am. A, 5(11):1986{2007, 1988.[2] D. J. Fleet and K. Langley. Computationalanalysis of non-fourier motion. Vision Research,34(22):3057{3079, 1995.
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