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Abstract Typically, image motion analysis in the fre-
quency domain is performed according to the Motion
From Fourier Coefficients, or MFFC principle. How-
ever, this principle excludes a class of motion that does
not generate power spectra containing the origin of the
frequency domain, which is usually referred to as Non-
Fourier motion. This type of motion includes phenom-
ena relevant to motion analysis such as translucency,
sinusoidal beats, occlusion, Theta motion, and lacks
a definitive theoretical framework. We address this
problem by deriving exact mathematical expressions for
Non-Fourier motion, thus providing a basis for compu-
tational models for velocity extraction in the frequency
domain. Numerical experiments demonstrating the va-
lidity of the approach are also presented.
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1 Introduction

Traditionally, motion perception has been equated
with orientation of power in the frequency domain.
The many optical flow methods use what Chubb and
Sperling term the Motion-From-Fourier-Components
(MFFC) principle [1] in which the orientation of the
plane or line through the origin of the frequency space
that contains most of the spectral power gives the rate
of image translation.

The MFFC principle states that for a moving stim-
ulus, its Fourier transform has substantial power over
some regions of the frequency domain whose points spa-
tiotemporally correspond to sinusoidal gratings with
drift direction consonant with the perceived motion
[1]. In addition, current models of human perception
involve some frequency analysis of the imagery, such
as band-pass filtering and similar processes. However,
some classes of moving stimuli which elicit a strong per-
cept in subjects fail to show a coherent spatiotemporal
frequency distribution of their power and cannot be un-

derstood in terms of the MFFC principle.

Examples include drift-balanced visual stimuli [1],
Fourier and Non-Fourier plaid superpositions [4], am-
plitude envelopes, sinusoidal beats and various multi-
plicative phenomena [2]. By drift-balanced it is meant
that a visual stimulus with two (leftward and rightward,
for example) or more different motions shows identical
contents of Fourier power for each motion and there-
fore, according to the MFFC principle, should not elicit
a coherent motion percept. However, some classes of
drift-balanced stimuli defined by Chubb and Sperling
do elicit strong coherent motion percepts, contrary to
the predictions of the usual MFFC model.

Sources of Non-Fourier motion also include the mo-
tion of texture boundaries and the motion of motion
boundaries. For instance, transparency as considered
by Fleet and Langley [2] is an example of Non-Fourier
motion, as transparency causes the relative scattering
of Fourier components away from the spectrum of the
moving stimuli. In addition, occlusion is another ex-
ample of Non-Fourier motion which is closely related
to the Theta motion stimuli of Zanker [5], where the
occlusion window moves independently from both the
foreground and the background, thus involving three
independent velocities.

It has been observed by Fleet and Langley that
many Non-Fourier motion stimuli have simple charac-
terizations in the frequency domain, namely power dis-
tributions located along lines or planes which do not
contain the origin of the frequency space, as required
by the MFFC idealization [2]. We develop exact fre-
quency representations for several non-Fourier motions
and state their properties with respect to image motion.

1.1 Methodology

To analyze the frequency structure of image signals
while preserving representations that are as general as
possible, an effort is made to only pose those hypothe-
ses that preserve the generality of the analysis to follow.
We describe the assumptions and the techniques with



which the theoretical results were obtained.

Image Signals The geometry of visual scenes under
perspective projection generally yields complex im-
age signals. Conceptually, assumptions concerning
scene structure should not be made, as they con-
strain the geometry of observable scenes. In addi-
tion, any measured physical signal, such as image
intensities, satisfies Dirichlet conditions. Such sig-
nals admit a finite number of finite discontinuities,
are absolutely integrable and may be expanded
into complex exponential series. Dirichlet condi-
tions constitute the sum of assumptions made on
image signals.

Mathematical Technique The results established in
this analysis emanate from a general approach to
modeling visual scenes exhibiting non-Fourier mo-
tion. In the case of occlusion, an equation which
describes the spatio-temporal pattern of the super-
position of a background and an occluding signal is
established, in which a characteristic function de-
scribing the position of an occluding signal within
the imaging space of the visual sensor is defined:

X(X)={ ;

Two image signals I (x) and I(x), corresponding
to the occluding and occluded signals respectively,
are defined to form the complete signal pattern:

if x within occluding signal
otherwise.

(1)

I(x,t) = x(vi(xt)h(vi(x,t))
+ [ =x(vi(x 1) Ta(va(x,1)),
(2)

where v;(x,t) is velocity. Alternatively, scenes of
translucency are modeled as

I(x,1) = f(p1)(v1(x, 1)) L2(va(x, 1)), (3)

where f(p1) is a function of the density of the
translucent material.

Hypotheses made on the components of (2) and (3)
are inserted and the structure of the correspond-
ing non-Fourier motions in frequency space are de-
veloped. That is to say, signal structures are ex-
panded into complex exponential series, such as:

[e%)

Li(x) = Z c,—neixTNk", (4)

n=—2%

where I;(x) is the i*" intensity pattern, c;, are
complex coefficients, k; are fundamental frequen-
cies, n” = (ny,n9,... n,) are integers and N =
n”T.

Relevance of Fourier Analysis It has been conjec-
tured that Non-Fourier spectra have mathemati-
cally simple characterizations in Fourier space [2].
Consequently, the use of Fourier analysis as a local
tool is justified as long as one realizes that it con-
stitutes a global idealization of local phenomena.
In that sense, Fourier analysis is used as a local
tool whenever Gabor filters, wavelets or local Dis-
crete Fourier Transforms are employed for signal
analysis.

Experimental Technique Given the theoretical na-
ture of this research, the purpose of the numerical
experiments is to verify the validity of the theo-
retical results. In order to accomplish this, the
frequency content of the image signals used in the
experiments must be entirely known to the exper-
imenter, thus forbidding the use of natural image
sequences. In addition, image signals with single
frequency components are used in order to facili-
tate the interpretation of experiments involving 3D
Fast Fourier transforms. The use of more complex
signals impedes a careful examination of the nu-
merical results and do not extend the understand-
ing of the phenomena under study in any particular
way.

2 Sinusoidal Beats and Translu-
cency

Sinusoidal beats are sums of sinusoidal patterns, each
moving with a possibly different velocity, and constitute
one of the simplest forms of Non-Fourier motion. A
simple beat involving two 1D sinusoids can be expressed
as

I(z,t) = cos(kiz + wit) + cos(kaz + wat), (5)

which is recognized as a case of additive translucency

involving two patterns. The Fourier transform of sinu-
soidal beats is straightforward yet does not comply with
the MFFC principle as the frequencies of each pattern
do not align to represent an unambiguous motion pat-
tern. These types of stimuli have been used to study
velocity detection thresholds and lead to the hypothe-
sis that the human visual system may use a non-Fourier
channel of motion detection [3].

Figure 1 shows a superposition of two 1D sinusoidals
and the corresponding Fourier transform. In the con-
text of sinusoidal beats, Ak and Aw are beat frequen-
cies and define group velocity as *A—Ak“’. Average frequen-
cies k and @ are carrier frequencies and define carrier
velocity as ==.

In the case of additive translucency, we express the
translucent event as (3) and assume a spatially constant



Figure 1: The composition of an additive transparency scene. a): First sinusoidal signal with frequency ky = =&
Second sinusoidal signal with frequency ko = 2%

1.0. b):

and velocity a; =

Transparency created with the superposition of first and second sinusoidal signal.

transparency.

c) d)

27
8
—1.0. ¢):

d): Frequency spectrum of

16 and velocity ay =

f(p1) with translucency factor ¢, leading to a weighted
superposition of intensity patterns, written as

I(x,t) = pLi(vi(x,1)) + (1 = @)a(va(x, 1)), (6)

where I (v1(x,1)) is the intensity profile of the translu-
cent material and I»(va(x,t)) is the intensity profile of
the background. With I (v (x,t)) and Is(va(x,t)) sat-
isfying Dirichlet conditions, the frequency spectrum of
(6) is written as

I(k,w) =

Z 5(k — Nki,w +al Nky) +

— ) Z cand(k — Nko,w + agng).

(7)

In this case, the velocities of interest are those of the

individual signals. Each of them is predicted by the
MFFC principle but the sum of their frequencies does
not allow a direct measurement.

3 Occlusion

At an occlusion, the occluding and occluded velocities
can always be identified as such and, a degenerate oc-
cluding signal exhibiting a linear spectrum is supple-
mented by the linear orientation of its occluding bound-
ary, allowing to determine the full velocity of the oc-
cluding signal.

Let I (x) and Ix(x) be 2D functions satisfying
Dirichlet conditions such that they may be expressed

as complex exponential series expansions (3). Also let
Il (X7t) = Il (V1 (X7t)), 12(X7t) = :[2 (VQ (X7t)) and the

occluding boundary be represented by (4). The fre-

quency spectrum of the occlusion is

I(k,w) =

m Y cind(k = Nki,w + aj Nki)

n=-3%

+(1—m) i
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k — Nkl)Tnl
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(8)

where Aa = a; —ay. Figure 2 shows the composition of
a simple occlusion scene with 2D sinusoidal signals. The
Fourier transform of its various components show that
the linear spectrum of the occlusion boudary is oriented
in a manner that is consonant with the velocity of the
occluding signal. Detecting this orientation amounts
to identifying the occluding velocity. In addition, since
both the occluding signal and its boundary translate
with identical full velocity, one can disambiguate the
normal velocity of the occluding signal.

4 Generalized Boundaries

Typically, occlusion boundaries are unconstrained in
shape, yielding a variety of occluding situations. Un-
der the hypothesis that the motion of the occluding
boundary is rigid on the image plane, we can derive
the frequency structure of such events. For instance,
consider a generalized occlusion boundary represented
by the characteristic function x(x) in the coordinates
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The composition of a simple 2D occlusion scene. a) The occluding sinusoidal signal with

frequency (15, 75) and velocity (—1.0,—1.0). b) The occluded sinusoidal signal with frequency (2%, 20 gnd velocity

88

(1.0,1.0). ¢) The step function used to create the occlusion scene with normal vector (M2 v2), d) The occlusion
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as a combination of a), b) and c). (bottom) e) through h): Image plots of corresponding amplitude spectra.

of the image plane and the Fourier transforms of the
complex exponential series expansions of both the oc-
cluding and occluded signals I; and I,. Substituting
these terms into the Fourier transform of (2) yields the
following Fourier spectrum

I(k,w) =

cinX(k — Nky)d(al k + w) —
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from which it is observed that the spectrum of the
occluding boundary is repeated at every non-zero fre-
quency of both signals. The spectrum occupies planes
descriptive of full velocity which can be used to perform
such measurements.

5 Theta Motion

Sources of Non-Fourier motion include such phenomena
as translucency, occlusion and, in particular, Zanker’s

Theta motion stimuli which are examples of Non-
Fourier motion involving occlusion with various forms
of occlusion windows[5]. This category of motion is
described by a window that translates with a velocity
uncorrelated with those of the occluding and occluded
signals. For 1D image signals, such an occlusion scene
can be expressed as

I(z,t) =
—  x(z — vst)Ia(z — vat)
=+ 12 (11 — ’Ugt).

x(z — vst)Ii(z — v1t)

(10)

As Zanker and Fleet [5, 2], we model the occlusion win-
dow with a rectangle function in the spatial coordinate
as

NI

oit [ >
(EFE) -4 s -

it 52 <

(11)

NI

N =

Such a function is non-zero in the interval |zg — %, o+

g[ and zero otherwise. We can then write the Fourier

transform of the occlusion scene (10) as

I(k,w) =

K Z sinc(k — nki1)ci1nd(kvs — nkiAvs) —

n=-—o00
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Figure 3: Generalized occluding boundaries. a), b) and c): Images from a sequence in which the occluding pattern
moves with velocity al = (—1.0,—1.0). Spatial frequency of the sinusoidal texture within the circular boundary
is ki = (%, ?—g) d): The frequency spectrum of the sequence, where the plane contains the spectrum of the
boundary convolved with the frequency of the texture.

Figure 4: Ezamples of Theta motion. a): Velocities of occlusion window, occluding and occluded signals are
vy = 0.5, v1 = 1.0 and vo = —2.0 respectively. b): Frequency spectrum of a). ¢): Velocities of occlusion window,
occluding and occluded signals are vy = —0.5, v = —2.0 and vo = 1.0 respectively. d): Frequency spectrum of c).

nclusion
sinc(k — nk2)cand(kvs — nkaAvs) + 6 Conclusio
We presented a framework for the Fourier analysis of
Cand(k — nky, w + nkavy), (12) non-Fourier motions which yields exact mathematical
expressions and forms a basis for computational models

for velocity extraction in the frequency domain beyond
the MFFC principle.
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where sinc(k) = S",;k, Avg = v3 —vl, Avy = v9 — v,

and K = b~ le *0b""  The spectra 0(kvs+w—nki Avsg)
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