
Petri Net-Based Cooperation In Multi-Agent
Systems

Y.T. Kotb, S.S. Beauchemin, and J.L. Barron
{ykotb, beau, barron} @csd.uwo.ca

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada
N6A 5B7

Abstract— We present a formal framework for robotic cooper-
ation in which we use an extension to Petri nets, known as work-
flow nets, to establish a protocol among mobile agents based
on the task coverage they maintain. Our choice is motivated
by the fact that Petri nets handle concurrency and that goal
reachability can be theoretically established. We describe the
means by which cooperation is performed with Petri nets and
analyze their structural and behavioral characteristics in order
to show the correctness of our framework.

I. I NTRODUCTION

Robotic navigation problems often benefit from the advan-
tages provided by multiple, cooperating mobile agents [5],[9],
[12]. Such gains include improved performance and simplicity
of robot design. In addition, there are common multi-agent
tasks that cannot be carried out by a single robot, such as
soccer playing and follow-the-leader swarms [3]. Conversely,
predator-prey and terrain exploration problems are examples
of tasks that can be performed by a single agent yet may be
more efficiently addressed with multiple robots [4].

Cooperation among a group of robots is defined as the
process of allocating and managing available resources to
reach a certain goal. Typically, these resources include time,
actions, knowledge, sensor readings, and computations. As
such, a cooperative situation must satisfy various constraints
on the goal, the tasks, and the robots themselves. They may
be summarized as:

• Constraints on the nature and the amount of resources to
be assigned to each robot, and the time frame in which
the goal must be reached.

• Constraints on the tasks to perform, such as precedence
ordering and the amount of time to complete tasks.

• Constraints on task and robot synchronization, if required.

Cooperating mobile agents thus negotiate for resources and
perform task planning and scheduling in order to accomplish
common goal.

We briefly cover relevant previous research in Section II,
followed by a focus on the related challenges posed by Perti
nets in Section III. Section IV illustrates the proposed solution
and Section V presents simulation results. Sections VI and
VII address the problems posed by input noise and scalability,
while Section VIII concludes on our framework.

II. PREVIOUS WORK

Recently, Limaet al. [11] introduced various types of Petri
nets to model distinct views of the robotic task model, in
addition to quantifying task performance and using learning
techniques to improve general efficiency of execution. How-
ever, soundness properties were not addressed and it remains
unclear whether this framework can guarantee successful co-
operative goal completion.

Zhang proposed a Petri net framework for task-level plan-
ning [15] in which an algorithm that depends only on the goal
and the constraints to derive action sequences is proposed.

Gerkey and Matari presented a domain-independent frame-
work for multi-robot task allocation in which it is shown that
task-allocation may be thought of as an instance of the optimal
assignment problem [7]. Alternatively, Noborio and Edashige
proposed an on-line, deadlock-free path-planning algorithm for
multiple agents operating in an infinite world [13].

III. PROBLEM STATEMENT

Given two or more mobile agents, a set of predefined ac-
tions, and a goal to attain, we must define a formal cooperative
behavior description among the robots to reach the defined
goal.

In our approach, we use Petri nets since cooperation requires
the handling of concurrency [6], [8]. In addition, Petri nets
guarantee the correctness of the cooperation protocol as the
notion of reachability in a given Petri net is a provability
problem in linear logic. We address the reachability problem
by using a special type of Petri nets known as work-flow nets
which, when correctly designed, guarantee that the goal is
reachable.

A Petri net is a directed graph for which the nodes are either
transitions (represented as rectangles), or places (represented
as circles). A place is connected to one or more transitions,and
a transition is connected to one or more places. Nodes sharing
identical types are not directly connected. Activities that are
performed by the transitions are represented by tokens (solid
circles) and they reside in places. An empty placep that is
connected to transitionT disables this transition from being
executed. A transition is said to be enabled if and only if there
is no empty places connected to it as inputs. A transition fires
after being enabled and the result of such firing is the removal

of tokens from each of its input places and the creation of
tokens in each of its output places.

The entire net models one or more processes in a system.
Places can be viewed as conditions to be satisfied for the
transitions they are connected to, or as the result of executing
one or more transitions in the model. Mathematically, a Petri
net is a tuple

ℵ =< P, T, F, W > (1)

whereP is the set of places,T the set of transitions,F the
set of arcs among transitions and places, expressed asP ×T ∪
T × P , andW a vector containing the weights of the arcs in
F .

IV. M ETHODOLOGY AND PROPOSEDSOLUTION

In order to design a framework capable of supporting co-
operation among a set of agents, the tasks to be performed by
the system must be taken into consideration. The diversity of
task types and constraints yield different designs. An example
of this is agent polymorphism, which exists when two or more
agents with different capabilities are able to complete thesame
task.

For instance, we may assume without loss of generality that
a set of objects are aligned on a straight line, and that robotsr1

andr2 are to pick them up. Robotsr1 andr2 have maximum
speeds of 2m/s and and 1m/s, respectively. If the constraint
on the task is to collect these objects at a speed of 0.5m/s,
then both robots belong to the same polymorphic class given
that they both can carry the task out. However, if the required
speed of the moving vehicle must be 1.5m/s, then, the robots
do not belong to the same polymorphic domain with respect
to this new constraint and only robotr1 is suitable for the
task. This example shows that task constraints and definitions
affect the level of cooperation mobile agents may attain.

A group of agents is said to behomogeneousif the capabil-
ities of the individual agents are identical andheterogeneous
otherwise. Heterogeneity introduces complexity because task
allocation becomes more involved and agents need to model
other individuals in the group.

In our model, we assume that there is a setΛ =
{λ1, λ2, . . . , λm} of all primitive action types that cannot be
fragmented into simpler action types, and sets of non-primitive
action typesǫ ⊂ Λ. Any actionα from a robot at a given time
is constructed from a list of non-primitive action types.

If a robot ri from the set of cooperating robotsR =
{r1, r2, . . . , rn} has plandj from the set of plansD =
{d1, d2, . . . , dk}, then the robot can perform its plan on its
own if and only if it meets the time constraints (if any), and
the following equation holds:

∀α ∈ dj : α ∈ ω(ri) (2)

whereα is an action,

ω(ri) = {WFnet1, WFnet2, . . . , WFnetl} (3)

is the action capability set of robotri, where WFneti are
extensions to Petri nets known as work-flow nets, anddj =

31T21T11T

P11 P12
P31

P
32

ν3
ν2

ν1

Fig. 1. AlthoughT11 ≡ T31, P11 ≡ P31, andP12 ≡ P32, ν1 cannot
replaceν3, since two transitions leave fromP12, as per the notion
of choice dependency.

αo ∪ (αk)∗, whereαo 6= ∅ is a starting action, and(αk)∗ is a
set of following actions (which might be∅).

Two robotsri and rk can cooperate to perform a desired
plan dj if they satisfy the task coverage property as follows:

∀α ∈ dj : α ∈ ω(ri) ∪ ω(rk) (4)

Robot rk is a candidate for cooperation with robotri if and
only if

∀α ∈ ∆j : ∆j = dj − ω(ri) such thatα ∈ ω(rk) (5)

where∆j is the difference between the capabilities required
to achieve plandj and the capabilities of robotri.

In our proposed framework, we use Petri nets to model
robots involved in cooperation and derive benefits from their
structural and dynamical characteristics to build a protocol
for cooperation. Conditions for an action to be taken are
given by the input places to a transition, and the results of
performing the action are given by the output places from that
same transition. Tasks, which are thought of as sets of actions
performed by robots, are represented as tokens in Petri nets.

Given a group of robots, the structural and dynamical char-
acteristics must be taken into consideration if the cooperation
is to be successful. With that intent in mind, we divide a Petri
net into unitsµi, where1 ≤ i ≤ k and k is the number of
units composing the Petri net.

A unit is a transition comprised of sets of input and output
places which model an action, the conditions that must be
satisfied prior to its execution, and the results of achieving
the action, respectively. We proceed with the mathematical
definition of a unit:

Definition 1 A unit is a tuple

νi = (•Ti, Ti, Ti•) (6)

whereTi is a transition,•Ti is the set of input places toTi,
and Ti• is the set of output places toTi.

The notion of choice dependence among units is important
because it directly affects the expected level of cooperation.
Units ν1 andν2 are said to be choice-dependent if and only if
their transitions share one or more input places. For instance,

if unit ν1 andν2 are choice-dependent, but unitν3 is choice-
independent, then unitν1 cannot replace unitν3 in its actions,
as depicted in Figure 1.

Definition 2 A unit ν is choice-independent if and only if the
following condition holds:

•Ti ∩ • (T − Ti) = ∅ (7)

whereT is the set of transitions in a Petri net.

If the unit is choice-dependent, then the set ofchoice-
dependencyis defined as:

χi = {Tj | Tj ∈ {T − Ti} and • Ti ∩ •Tj 6= ∅} (8)

and can be determined with:

χ(Ti) = δ(W−(Pj , Ti) − W−(Pj , Tk)) (9)

∀m
j=1 Pj ∈ •Ti ∩ •Tk and ∀m

k=1 Tk ∈ T

wherem is the number of placesPj ∈ •Ti, k is the number
of transitionsTk ∈ T , W− is the input incident matrix of the
Petri net, andδ is a Dirac delta function.

Two units are identical if and only if they satisfy similarities
in transition, precondition, and post-condition. A transition
similarity is defined by the action type it belongs to. Two
transitionsT1 andT2 are similar if and only ifT1 ∈ λ implies
that T2 ∈ λ, where λ is an action type belonging toΛ.
Precondition and post-condition similarities are tested by the
following equations:

Spre = δ(Γ(T1) − Γ(T2)) (10)

and
Spost = δ(γ(T1) − γ(T2)) (11)

where Γ(Ti) and γ(Ti) are column vectors representing the
input and output places to and from transitionTi, respectively.

Definition 3 A unitα is similar to unitβ if and only if∃ T1 ∈
α and ∃ T2 ∈ β | Λ(T1) = Λ(T2) and •T1 ≡ •T2 and T1• ≡
T2•.

An example of similar units from two different Petri nets
is given in Figure 2. While the concept of units is a step
forward in defining cooperative processing, it is not practical,
as most units in realistic situations are choice-dependent.
Consequently, two or more choice-dependent units may find
themselves exchanging actions (or tokens) more often than
necessary. Hence, the success of cooperative choice-dependent
units is not guaranteed. However, if there is a possibility to
view the group of interdependent units as one composition,
the process of cooperation becomes feasible and the success
of the cooperative process is then guaranteed. Toward this end,
we proceed with the definition of compositions of units within
Perti nets:

Definition 4 A composition C is a set of joined units in a
topology:

C = {U, P, F} (12)

T

P1a

2a

P4a

P3a

P2a

T1a

T3a

5aP
P

P1b

P2b P5b

P3b

P4b

T2b

T1b

T3b

6b

Fig. 2. Two different Petri nets illustrating the concept of similarity.
T1a and T1b are of the same type.

where U is a set of units,P is a set of places, andF ⊆
U ×P ∪P ×U . Figure 4 illustrates similar compositions from
two Petri nets.

Definition 5 A compositionC1 ⊂ C2 if and only if ∀ ui ∈
C1 ∃ uj ∈ C2 | ui ≡ uj

A. An Example

Figure 2 shows two simple Petri net units that we would
like to test for similarity. Suppose thatT1a andT1b are of type
ǫ1, andT3a andT3b are of typeǫ2. We find the precondition
and post-condition similarities as follows:

W+
1 =













0 0 0
1 0 0
0 1 0
0 1 0
0 0 1













W−

1 =













1 1 0
0 0 1
1 0 0
0 0 1
0 0 0













(13)

W+
2 =

















0 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1

















W−

2 =

















1 0 0
0 1 0
1 0 0
0 0 1
0 0 1
0 0 0

















(14)

•T1a =













1
0
1
0
0













•T1b =

















1
0
1
0
0
0

















(15)

T1a• =













0
1
0
0
0













T1b• =

















0
0
1
0
1
0

















(16)

Γ(T1a) = 2 Γ(T1b) = 2 γ(T1a) = 1 γ(T1b) = 2
(17)

Fig. 3. Similar units in different Petri nets. In this example, the
concept of similarity is applied to subsets of the Petri nets, instead
of the entire nets.

Spre = δ(2 − 2) = 1 Spost = δ(2 − 1) = 0 (18)

In this example, we find that the two units satisfy the precon-
dition similarity but not the post-condition similarity. Figure
3 illustrates an example of similarity, where the units are
comprised within dotted lines. An example of composition
is given in Figure 4. A composition is a set of units in a Petri
net.

B. Redirecting Activities to Similar Units

Fig. 4. Similar compositions in different Petri nets. A composition is
is a set of units in a Petri net.

The merit of this technique is the ability to use similar
compositions in Petri nets to perform one or more actions from
the task under consideration in such a way that its deadline can
met. Consider the example in Figure 5 and assume that there
is a token (or action) that is going to miss its deadline in place
P4. If P2 is empty, then transitionT4 is enabled and executed.
As a result, the token under consideration is consumed from
placeP4 and regenerated inP1 andP3.

When T1 executes, then the token inP1 is processed and
appears inP2. Following this sequence,T5 executes, moves
the token toP5, consumes the token inP3, and enablesT3, if
the required tokens exist. The purpose of transitionsT4 andT5

is to ensure that the migrating token goes to the desired route
and returns, as opposed to being consumed by an undesired
transition.

C. Examples of Cooperation

Suppose a work-flow such as that of Figure 6, and two
robotsri andrj . We assume that every transition in the work-
flow is in set ω(ri). In the case whereω(rj) = ω(ri) − α,
whereα is an action to reach a stack of objects,ri is clearly
unable to perform the plan on its own and must ask for the
cooperation ofrj to complete its mission, as depicted in Figure
7.

Another example is given by a task requiring two robotsri

and rj to synchronously act together to perform the task, as
shown in Figure 8. Robotri is represented by a WFnet with
the following actions:

• See an object
• Move toward object
• Grip object
• Move toward home

Robot rj also has these capabilities, plus the following two
actions:

• Reach object stack
• Put object on stack

If the function of bothri and rj is to grab objects from a
loading zone and put them as stacks in another location, then
rj is able to achieve the required task on its own, whereas
robot ri is only able to get objects from the loading zone
to a location near a stack. If the two robots cooperate, then
whenever robotri grabs an object and transfers it to the store,
it hands it to robotrj if it is available andrj can put it on
the top of a stack. Ifrj is not available, thenri waits until
rj becomes available. This cooperative protocol, depicted in
Figure 8, shows that when robotri hands the object out to
rj , the token that represents the object is then given as the
input node of the work-flow representingrj , as to respect the
requirement that any work-flow has a single input entry point.

D. Proof of Correctness

In order to show that the proposed framework is correct,
we need to demonstrate that it yields the desired goals for
cooperation. As previously stated, the provability problem
from linear logic is a reachability problem in Petri nets. Since
we use work-flow nets (WFnet), reachability is assured [1],
[2]. However, we must guarantee that the proposed framework
has the property of soundness [10], [14].

A Petri netℵ is a WFnet if and only if [1], [2]:
• ℵ has an input placei, where•i = φ.
• ℵ has an output placeo, whereo• = φ.
• If a transition t∗ is added toℵ such that•t∗ = o and

t∗• = i, the Petri netℵ∗ becomes strongly connected.
Note thatt∗ is a transition which connects the input to the
output of the WFnet.

A WFnet ℵ is sound if and only if:
• ∀ M ∈ |Mi〉, Mo ∈ |M〉
• ∀ M ∈ |Mi〉, Mk ≥ n ⇒ M = Mo

• ∀ t ∈ T, ∃ M ∈ |Mi〉, t ∈ |M〉

where M is the marking of the WFnet, Mi is the input
marking, Mo is the output marking,Mk is the marking at

T

P1

T3

T1

P3

P2
T4

T5

P4

2

P5

Fig. 5. Two cooperating Petri nets. TransitionsT1 andT2 are similar.
If there is a token that exists inP4, then it can be transferred toP1 to
be processed byT1, instead ofT2. WhenT4 fires, it creates a token
in P3 and P1, which represent the activity under consideration. The
token inP3 disablesT3 and guarantees that the activity flows through
the right path. WhenT1 is enabled, it eventually fires and the token
in P1 moves toP2, which temporarily disablesT4 and immediately
enablesT5, which in turn fires and produces the processed token by
putting it in P5.

time k, n is the number of tokens inMo, andt is a transition.

We now present a cooperative framework among robots:

Θ =< Λ, R, Ω(R), D, S, ξ > (19)

whereΛ is the set of primitive action types,R is the set of
cooperating robots,

Ω(R) = {ω(r1), ω(r2), . . . , ω(rn)} (20)

is the set of all robot capabilities, andD is the set of plans to
be performed by the set of robots. The set of all similarities
between robot capabilities is defined as:

S = {S1, S2, . . . , Sn(n−1)} (21)

where
Sk = WFneti ∩ WFnetj (22)

∀ WFneti ∈ ω(ri) and∀ WFnetj ∈ ω(rj).
ξ = {ξ1, ξ2, . . . , ξz} is the set of work-flows that bind two or
more different work-flows from two or more robots.

Move toward home Reach object stackGrip objectMove toward object Put object on stack

See an object

P3 P4

P2

P

P P6

P7

1

5

Fig. 6. A simple WFnet model for a robot activity which consists of
6 transitions, each representing a predefined action. Usually, models
for robot activities are complex; this example is meant to show how
actions are mapped into transitions.

We present a theorem of soundness for our framework. A
framework is sound if any valid input plan can be carried out
successfully, under the hypothesis that the set of robot capabil-
ities satisfies the task coverage requirement. For mathematical
convenience, we add a single input placepi and a single output
placepo as shown in Figure 8.

Theorem 4.1:A cooperation platformΘ is sound if and
only if the following conditions are satisfied:

• ∀ WFnet∈ Ω(R), WFnet is sound
• ∀ ǫ ∈ Λ, ǫ ∈ Ω(R)
• ∀ d ∈ D, ∃ WFnet× WFnet | d is executable
• ∀ ξi ∈ ξ, ξi is a sound work-flow net

Proof:
• SinceΩ is sound, thenpo ∈ |pi〉 and ∀ d ∈ D, d will

eventually reachpo, regardless of the WF it goes through.
Hence, we have∀ WFnet ∈ Ω(R), WFnet is a sound
work-flow net

• Sincepo ∈ |pi〉, D = αo∪(α∗

i), and thatd will eventually
reachpo, we have∀ǫ ∈ α, ǫ ∈ ω(R) and, consequently,
∀ d ∈ D, ∃ WFnet× WFnet | d is executable

• The definition of soundness∀ M ∈ | pi〉, po ∈ |M〉
implies ∀ ξi ∈ ξ, ξi is a sound work-flow

Therefore, for soundΘ, the four conditions are satisfied.
We now show the converse, namely that if the four condi-

tions are satisfied, the framework is sound.
Proof:

• Since ∀ WFnet ∈ Θ(R), WFnet is a sound work-flow
net, we have∀ ξi ∈ ξ, ξi is a sound work-flow net.

• We havepo ∈ |pi〉 and, since∀ ǫ ∈ α, ǫ ∈ Θ(R), we
obtain∀ d ∈ D, ∃ WFnet× WFnet | d is executable.

• With d ∈ D andd ∈ pi, d will eventually reachpo.
We conclude thatΘ is sound.

V. SIMULATION RESULTS

Figures 9 and 10 show the dynamic programming algo-
rithm which determines the plan adopted by the two robots
to achieve a predefined objective. These Tables solve the
cooperation problem shown in Figure 7, where the objective is
a plan made of six consecutive actions. The Tables represent
robot transitionsTi and desired actionsaj .

See an object

P1

See an object

Robot ri

Robot rj

Move toward homeGrip objectMove toward object

P3 P4

P2

Ask for cooperation

P1

P5

P6

Move toward object

Grip object Move toward home Reach object stack

Put object
on stack

Accept cooperation

to rj

Hand object

Normal route
preventer

P6

P7

P5P4P3

P2

Fig. 7. A cooperative solution for two robotsri and rj to collect
objects and put them in a stack in a home zone. Robotri sees an
object, moves toward it, grips it and returns home. Robotrj has the
same capabilities besides the ability reach the object stack and put
the object on the top of the stack. Hence, robotri can not complete its
mission unless it cooperates withrj . If robot ri already has an object
and is waiting in the home zone, it asksrj for cooperation which
accepts only if it does not have another object between its grippers
and is in the home zone. If this is the case, then robotrj accepts
cooperation and the task is fed to the beginning ofrj ’s work-flow,
and redirected to the transition (reach object stack), so that robot rj

completes the task. Physically,ri gives the object to robotrj .

The capabilities of robotra are represented by the transi-
tions See an object, Move toward object, Grip object, and
Move toward home, which are labeled in the Tables from
Figures 9, and 10 asT1, T2, T3, and T4 respectively. The
capabilities of robotrb are labeled by the transitionsSee
an object, Move toward object, Grip object, Move toward
home, Reach object stack, and Put object on stack, which
are labeled asT5, T6, T7, T8, T9, andT10 respectively. The
dynamic programming algorithm has two phases, forward and
backward. The forward phase fills the matrix with either 0 or
1, according to the following equation:

f(aj , Ti) =

{

1 if Ti ∈ λ andaj ∈ λ
0 otherwise

(23)

For instance, if a transitionTi has the same type of action
as aj , then the matrix element(aj , Ti) is set to 1, and zero
otherwise.

In the backtracking phase, the algorithm constructs plans by
gathering the elements that are set to1 in the forward phase.

See an object

See an object

Robot ri

Robot rj

Move toward homeGrip objectMove toward object

P3 P4

P2

Ask for cooperation

P5

P6

Move toward object

Grip object Move toward home Reach object stack

Put object
on stack

Accept cooperation

to rj

Hand object

Normal route
preventer

P6

P7

P5P4P3

P2

P1

P1

In
p

u
t

O
u

tp
u

t

Fig. 8. The cooperative framework of Figure 7. This diagram displays
the input and output places, which are added for mathematical
convenience.

The algorithm continues until the transition that performs
action a1 is in the plan. After the algorithm halts, a typical
plan can be formed froman to a1. It is worth noting that the
set of actions the robots take in this typical plan are froma1

to an.
The algorithm shown in Figure 9 gives a plan. In order to

get every possible plan, the algorithm has to verify each and
every possibility, as shown in figure 10. The dotted rectangles
in Figures 9 and 10 separate the transitions which belong to
robot ra from those of robotrb. If the plan resides within the
set of transitions of a single robot, then this plan does not
support cooperation.

The simulation results are shown in Figure 11. Thex-axis
represents the number of objects to be collected, and they-axis
represents the time required to collect that number of objects.
We assume an equal amount of time for each transition.

Line a) in the graph represents the case of a single robot
collecting a number of objects. It starts with 6 time units for
collecting one object and reaches 6000 time units when it
is collecting 1000 objects. Lineb) represents the cooperation
case, and starts at 6 time units when the number of collected
objects is 1 and ends with approximately 3550 time units. Line
c) in the graph represents the fully parallel case in which
each robot is equipped with all the capabilities it needs to
perform the task alone. The simulation results show that the
cooperation performance tends to get closer to that of the
fully parallel case. It is important to notice that getting the
cooperation performance closer or equal to the fully parallel
case depends on the basic capabilities of the cooperating
robots.

a

a

a

a

a

a

T T T T T T T T TT

0 0 0

000

0

0

0

0 0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7 9 108654321

2

3

4

5

6

1 1

Transitions that belong to
Petrinet of robot

Transitions that belong to
r Petrinet of robot rba

Fig. 9. A dynamic programming model for finding a plan. This model
corresponds to the situation depicted in Figure 7.

a

a

a

a

a

a

T T T T T T T T TT

0 0 0

000

0

0

0

0 0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7 9 108654321

2

3

4

5

6

1 1

Transitions that belong to
Petrinet of robot

Transitions that belong to
r Petrinet of robot rba

Fig. 10. A dynamic programming model for finding all plans. This
model corresponds to the situation depicted in Figure 7.

VI. I NPUT NOISE

Any action that is required for the success of the cooperation
plan must belong to the union of all capability sets of the
cooperating agents. If the platform possesses action types
that support the handling of noise, then the platform will
be able to perform correctly when noise is present. As an
example, consider the case shown in Figure 8 and assume that
the loading zone and the stack exist in two different rooms
separated by a door. Suppose that at some point during the
experiment, the door closes for any reason (noise). If one of
the agents has the capability of performing the appropriate
action (open door), then the platform can handle the situation
by forming a new sub-plan to handle the noise as a form of
exception handling. However, if none of the cooperating agents
is able to perform the appropriate action, then the exception
will cause the plan to fail.

VII. SCALABILITY

Scalability refers to the operation of the platform when
the number of agents increases. Our approach guarantees
scalability and, to prove our claim, we use induction and a

0

2000

4000

6000

0 250 500 750 1000

T
im

e
u
n
it

s

Transitions

Simulation results

a- single robot
b- 2 cooperative robots

c- 2 parallel robots

Fig. 11. Performance analysis of the algorithm. Time units are
assumed as constant and identical for all graph transitions.

union operator⊗ which is applied between two cooperative
platforms and produces a third platform as a result. The two
cooperative platforms must be sound in order to yield a valid
cooperative platform. The operator is also applied on two
agents as a base case since a single agent can be formulated
as a cooperative platform:

Θ =< Λ, R, Ω(R), D, S, ξ > (24)

where S and ξ are both∅, since the cooperative platform
contains a single agent.

AssumeΘ = Ri ⊗Rj , whereΘ is the union ofRi andRj ,
the work-flows drawn inside the designated boxes from Figure
8. We prove the scalability of the platform by induction using
three base cases as follows:

Proof:

• Base caseN = 2 with agentsri, ri+1, which corresponds
to the case shown in Figure 8.

• Base caseN = 3 with agentsri, ri+1, ri+2:

ri = Θi =< Λ, ri, Ω(ri), D, ∅, ∅ > (25)

ri+1 = Θi+1 =< Λ, ri+1, Ω(ri+1), D, ∅, ∅ > (26)

ri+2 = Θi+2 =< Λ, ri+2, Ω(ri+2), D, ∅, ∅ > (27)

Thus
Θi ⊗ Θi+1 = Θc1 (28)

and
Θc1 ⊗ Θi+2 = Θc2 (29)

are sound cooperative platforms.
• Base caseN = 4 with agentsri, ri+1, ri+2, ri+3:

ri = Θi =< Λ, ri, Ω(ri), D, ∅, ∅ > (30)

ri+1 = Θi+1 =< Λ, ri+1, Ω(ri+1), D, ∅, ∅ > (31)

ri+2 = Θi+2 =< Λ, ri+2, Ω(ri+2), D, ∅, ∅ > (32)

ri+3 = Θi+3 =< Λ, ri+3, Ω(ri+3), D, ∅, ∅ > (33)

Thus
Θi ⊗ Θi+1 = Θc1 (34)

and
Θi+2 ⊗ Θi+3 = Θc2 (35)

and
Θc1 ⊗ Θc2 = Θc (36)

are sound cooperative platforms.
• Hypothesis: We assume that the following applies:

1) There arek − 1 agents

{ri, ri+1, ..., ri+k−2, ri+k−1}

2) The firstk − 2 agents constitute a sound platform
Θk−2.

3) Θk−2 ⊗ ri+k−1 constitutes a soundΘk−1.
• Induction: It is required to show that an agentri+k can

join the cooperation plan given that the proposed theorem
applies.

1) From the hypothesis,Θk−2 is a sound cooperation
platform.

2) From the base case,ri+k−1⊗ ri+k = Θc is a sound
cooperation platform given that the theorem applies.

3) From the definition of the union operator,Θc⊗Θk−2

yields Θk which is sound given that the proposed
theorem applies.

Therefore, The proposed platform is scalable for any number
k of agents.
While the platform is scalable, it is not guaranteed to yieldthe
best performance in the case ofN > 2 heterogeneous agents,
owing to the fact that the selection of a cooperation pair among
a set of candidate agents highly affects the planning process.
The problem of achieving full cooperation among a set ofN
agents while taking performance into consideration is partof
our future work.

VIII. C ONCLUSION

We proposed a Petri net-based cooperative framework for
multi-agent systems. The framework provides an algorithm
to verify similarities among agent capabilities in order to
determine the possibility of cooperation with respect to a
desired task.

Similarities are examined from what we have defined as
compositions. The dynamic behavior of the framework is also
studied by investigating the reachability criterion and ensuring
that the framework is sound, provided that the design obeys
the specified constraints. A theorem and a proof of soundness
is proposed. To conclude, cooperation is achievable by the
proposed framework provided that the task coverage criterion
is met by the agents, and the design follows the soundness
constraints specified in the theorem.

REFERENCES

[1] W.M.P. Van Der Aalst. The application of petri nets to work-flow
management.The Journal of Circuits Systems and Computers, 8(1):21–
66, 1998.

[2] W.M.P. Van Der Aalst, M. Weske, and G. Wirtz. Advanced topics in
work-flow management: Issues, requirements and solutions.Journal of
Integrated Design and Process Science, 7(3):49–77, 2003.

[3] T. Arai, E. Pagello, and L.E. Parker. Editorial: Advances in multi-robot
systems. IEEE Trans. On Robotics and Automation, 18(5):655–661,
October 2002.

[4] T. Balch and L.E. Parker.Robot Teams: From Diversity to Polymorphism.
A.K. Peters, Ltd., 2002.

[5] Y.U. Cao, A.S. Fukunaga, and A.B. Kahng. Cooperative mobile robotics:
Antecedents and directions.Autonomous Robots, 4(5):7–27, 1997.

[6] I. Chebbi, S. Tata, and S. Dustdar. The view-based approach to dynamic
inter-organizational work-flow cooperation. Technical Report TUV-
1841-2004-23, Vienna University of Technology, Salzburg,Austria,
2004.

[7] B.P. Gerkey and M.J. Matari. Multi-robot task allocation: Analyzing the
complexity and optimality of key architectures. InIEEE Int. Conf. on
Robotics and Automation, pages 3862–3868, September 2003.

[8] D. Grigori, F. Charoy, and C. Godart. Coo-flow: A process technology
to support cooperative processes.Int. Journal of Software Engineering
and Knowledge Engineering, 14(3), 2003.

[9] J.E. Haddad and S. Haddad. Self-stabilizing schedulingalgorithm for
cooperating robots. InProc. ACS/IEEE Int. Conf. on Computer Systems
and Applications, 2003.

[10] Y. Kotb and E. Baderdin. Synchronization among activities in a work-
flow using extended work-flow petri nets. InProc. of the 7th IEEE Int.
Conf. on E-Commerce Technology, pages 548–551, 2005.

[11] P. Lima, H. Gracio, V. Veiga, and A. Karlsson. Petri netsfor modeling
and coordination of robotic tasks. InProc. of the IEEE Int. Conf.
on Systems, Man, and Cybernetics, pages 190–195, San Diego, USA,
October 1998.

[12] J. Liu and J. Wu.Multi-Agent Robotic Systems. The CRC international
Series on Computational Intelligence, 2001.

[13] H. Noborio and M. Edashige. A cooperative path-planning for multiple
automata by dynamic/static conversion. InIEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 1955–1962, July 1993.

[14] M.K. Purvis, M.A. Purvis, and S. Lemalu. An adaptive distributed work-
flow system framework. In7th Asia-Pacific Software Engineering Conf.,
pages 311–318, Los Alamitos, CA, 2000. IEEE Computer Society Press.

[15] W. Zhang. Representation of assembly and automatic robot planning by
petri net. IEEE Trans. on Systems, Man, and Cybernetics, 19(2):418–
422, 1989.

