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Abstract

In this paper we introduce a new computer vision frame-
work for the analysis and interpretation of the cephalo-
ocular behavior of drivers. We start by detecting the most
important facial features, namely the nose tip and the eyes.
For that, we introduce a new algorithm for eyes detection
and we call upon the cascade of boosted classifiers tech-
nique based on Haar-like features for detecting the nose
tip. Once those facial features are well identified, we apply
the pyramidal Lucas-Kanade method for tracking purposes.
Events resulting from those two approaches are combined in
order to identify, analyze and interpret the cephalo-ocular
behavior of drivers. Experimental results confirm both the
robustness and the effectiveness of the proposed framework.

1. Introduction

Driving is a very important activity for a large portion of
the population, especially among the elderly. Epidemiologi-
cal studies show that this category of drivers may sometime
adopt an unsafe driving behavior. This is due to the diffi-
culties experienced by those drivers in demanding driving
situations such as car overtaking, lane change, intersection
crossing, etc. Those driving contexts involve a complex
cephalo-ocular behavior and visual research actions, such
as blind spot checking and rear view / lateral mirror veri-
fication. Evaluation and improvement of the driver perfor-
mance in a safe environment (driving simulator) are of great
importance for road safety. The main objective of this work
is the elaboration of a new computer vision system for eval-
uating and improving driving skills of older drivers. This
system imply the analysis and treatment of cephalo-ocular

behavior and visual search actions of older drivers in a sim-
ulated driving context (cf. Figure 14). More specifically, we
focus on the visual research action related to the verifica-
tion of the blind spots when overtaking and lane changing.
Experiments run in our laboratory have shown that 80% of
older drivers do not check the blind spots in these contexts.
Thus, by providing a new system allowing the objective de-
tection of driving errors in a safe environment (simulator), it
is expected that retraining drivers will lead to safer driving
in the long term. The proposed system includes three main
processing steps. The first one is devoted to the detection
of the most important facial features, namely the nose tip
and the eyes. The second one is dedicated to the tracking
of these facial features. The last step deals with the analy-
sis and interpretation of the cephalo-ocular behavior and the
visual research actions of driver.
In section 2 we describe different approaches for the de-

tection of facial features. Section 3 is devoted to the track-
ing process. The proposed system is detailed in section 4.
Experimental results of intermediate steps of the system are
shown in the appropriate subsection. Note that images and
videos used in this paper can be both in color and in gray-
level mode.

2. Detection of Facial Features

In pattern recognition, an important research field is the
detection and localization of objects and patterns. The ma-
jority of existing research work [10, 11, 14, 20, 21] is based
on the following approach: a sliding window is matched
with image parts at different positions and scales. Each
mapping reveals whether the sliding window contains the
requested object or the background. Another use of this
approach is to detect parts of the object instead of the
whole object [8, 9]. Those detected parts will be assem-
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bled in order to recognize the full target. Another set of ap-
proaches [2, 4] is based on region mapping around extracted
local interest points from the image, rather than performing
operations on the whole image.

2.1. Eyes detection

In what follows, we introduce a new method for eye
detection. The main goal is to identify the two pupils
of a person. The proposed method is based on a priori
knowledge of eye geometry, on its position in the face and
on its position relative to the other eye (angle, distance,
shape, etc). Additionally, the Region of Interest ROI of
the eyes in the face is identified a priori. The recognition
of the two pupils reduces to the identification of a pair of
blobs (connected set of pixels) with relatively round shapes
and reasonable sizes. The proposed method is comprised
of the following steps:

Extraction of the blobs: Blob extraction as shown in
Figure 4.(c) is achieved according to the two following
steps: First, a saturation process is applied to the eyes ROI
followed by the application of a closing operator (dilatation
and erosion). Second, an algorithm for connected compo-
nents extraction is applied to obtain blobs. The resulting
blobs are characterized by different sizes and shapes and
only two of them correspond to the eyes. In what follows,
a serie of tests is applied in order to identify the requested
pair of blobs.

Subdivision of highly non-convex blobs: The saturation
process can generate highly non-convex blobs that may con-
tain the requested blobs. For example, if we apply the sat-
uration process to an image of a driver wearing eyeglasses,
the eye can merge with a part of the glasses (cf. Figure 1).
The shape of the blob containing the eye is thus highly non-
convex and differs from the requested shape (eye geome-
try). One possible solution to this problematic situation is

Figure 1. Example of non-convex blob.

to subdivide the highly non-convex blob (cf. Figure 2.(a))
in several other convex blobs (cf. Figure 2.(b)). To this end,
we introduce the following algorithm:

• Calculation of the convex hull encompassing the con-
sidered blob using the algorithm proposed by Sklan-
sky [17].

• Calculation of the difference between the convex hull
of the blob and the blob itself. The OpenCV algo-
rithm "CvConvexityDefect" used here returns the start-
ing and end points of the non-convexity, the coordi-
nates of the deepest point and the depth of each non-
convexity.

• Filtering: we only consider the strong non-convexities,
i.e. a depth of the order of several pixels. Thus, for
non-convex regions whose depth is greater than n pix-
els, the blob is separated in two parts.

• Calculation of the line separating the blob: the latter
connects the deepest point with the midpoint between
the extremity points (cf. Figure 2.(a)).

• Subdivision of the blob: the elements of the blobs on
either side of the line are grouped into two new blobs
(cf. Figure 2.(b)).

(a) (b)

Figure 2. The principle of blob separation.

Selection of blobs: Once the blobs are detected and divided
whenever necessary, a first filter is applied in order to elim-
inate those blobs whose features are not compatible with
the typical shape of an eye. The selection criteria are very
simplistic, but are discriminating enough for enabling the
identification of the requested blobs:

• The number of pixels: must be within an acceptable
range. Thus, a blob made up of less than 5 pixels is
considered too small, but a blob of more than 200 pix-
els is too big (cf. Figure 4.(d)).

• Dimensions: The width and height of the rectangle
enclosing the blob are calculated (cf. Figure 4.(e)).
The ratio width/height can reveal the shape of the blob.
Each blob elongated in the vertical direction is elimi-
nated (width/height « 1).

• The shape: a circle Cfit is adjusted by a least squares
method [17] for each of the blobs having passed the
previous tests (cf. Figure 4.(f)).
A first discrimination of the blobs is made according
to the value of the radius of the circle.
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A second discrimination is based on the ratio RA be-
tween the surface covering the intersection between
the blob and the circle and the surface of the circle
itself. This ratio reveals whether the blob is circular
and is well registered in the best circle Cfit (cf. Fig-
ure 4.(g)).

RA =
Ablob

T
Acircle

Acircle
, (1)

with Ablob and Acircle are respectively the area of the
blob and the area of the circle in pixels.

The blobs that survived to the above mentioned criteria,
are rated on a scale ranging from 0 to 1. To this end, a
weighting system based on the Standard Gaussian SG dis-
tribution is used in order to associate a weight to each blob,
according to its characteristics that are compared to an ideal
case. A weight of 1 corresponds to a blob corresponding to
the ideal case.

SG(x) = exp(−(x− μ)2

2σ2
), (2)

with μ the mean and σ the standard deviation.

(a)

Figure 3. Standard Gaussian distribution with
μ = 1 and σ = 0.5.

The parameter μ represents the reference value, i.e. the
value corresponding to an ideal ratio. It would be 1 if we
consider that the pupil is perfectly circular regardless of
the viewpoints. In this case, the used Gaussian is centered
around 1 (cf. Figure 3). The parameter σ is calculated em-
pirically and corresponds to the tolerance threshold given to
the ratio values.
Finally, each blob has a weight associated to the ra-

tio RA, to the radius of the circle Cfit and to the ratio
width/height. The final weight of the blob is given by the
average value of these three weights.

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 4. Steps of the eyes detection algo-
rithm. (a): the region of interest, (b): after
saturation of the image, (c): after closure, (d):
after selection by size of blobs,(e): after se-
lection by shape of blobs, f): fitting circles on
blobs, (g): fit application on the image of ROI
and selection according to the radius of fit
the circle, (h): comparison between the sur-
faces of circles and the intersection of circle
and blob, (i): final selection.

Selection per pairs of blobs: At this step of the process,
we selected the blobs that have a high probability of corre-
sponding to the eyes. In what follows, we do not consider
blobs individually, but as pairs. We identify the pairs of
blobs that are arranged such as to correspond to both eyes.
In our working context (Driving simulator), the distance be-
tween the driver and the camera is roughly constant over
time. Additionally, since the human morphology is rela-
tively constant, we assume that the gap between the eyes
varies slightly from one individual to another. These two
simplifications are exploited thereafter and make it possible
to effectively discriminate the blobs that can correspond to
pairs of eyes.
We start by constructing, without repetition, all possible

pairs of blobs. Knowing the number of blobs n, the number
of possible pairs N is given by:

N = C2n =
n!

2!(n− 2!) . (3)

Once all possible pairs are built, the next step consists in
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calculating the Euclidean distance dpair between the blob
centers of each pair, as well as the angle αpair between the
line connecting the two blobs of the considered pair and the
horizontal of the image. These criteria allows us to discrim-
inate more pairs of blobs.

dpair =
p
(x2 − x1)2 + (y2 − y1)2,

αpair = arctan(
y2 − y1
x2 − x1

), (4)

with (x1, y1) and (x2, y2) the coordinates of the blobs cen-
ters.
For the remaining pairs, a weighting system similar to

the one used for rating the blobs, is applied in order to com-
pare the probability that a pair corresponds to the eyes. This
system combines the information about both the pairs and
the blobs. Thus, if two pairs have similar values of dpair
and αpair, the values characterizing the blobs will make the
difference. If by this process, the weights assigned to each
pair do not allow the selection of the requested pair of blobs,
the final selection will be achieved at the matching step.
Experimental results of the above mentioned approach

are given in Figure 5. We conclude that the detection of
both eyes is performed successfully and independently of
the head position in the image.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Experimental results of eyes detec-
tion.

2.2. Nose detection

For nose detection we call upon the cascade of boosted
classifiers based on Haar like features technique. This ma-
chine learning approach for rapid object detection, was first
introduced by Viola and Jones [19] and then extended by
Lienhart and Maydt [6] using a new set of rotated Haar-like
features. It is achieved according to the following steps.
First an AdaBoost-based classifier is trained from a set of
positive and negative examples. Positive examples are tar-
get images and negative examples are arbitrary images not
including the target. Once the classifier is trained, the next
step consists in target detection. For that, a sliding window
is applied at different positions within the requested image.
For each position, the classifier decides whether the slid-
ing window contains the target or not. Finally, the method
returns the regions likely to contain the target. Further
details about the classifiers-based detection can be found
in [6, 10, 19, 20].
In our case, for the training step we take a set of 500

images from which we construct a set of 2500 positive and
2500 negative examples (cf. Figure 6 and 7). Positive exam-

Figure 6. A sample of positive examples.

ples are images of different noses extracted manually from
our image database. Negative examples are images of dif-
ferent parts of the face not including the nose. Experimental
results are given in Figure 8.

Figure 7. A sample of negative examples.
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In figure 8, obtained results reveal that the detection of
the nose tip is achieved successfully regardless of face ori-
entation and skin color.

Figure 8. Nose tip detection results.

Note that the approach used for nose tip detection can be
adapted to eyes detection as well. This is achieved by the
use of a new learning set based on eye models. Note that
we use the learning set provided by the OpenCV library. In
Figure 9 we show the experimental results obtained with the
joint detection of both eyes and nose tip.

Figure 9. Joint detection of both eyes and
nose tip.

3. Tracking of facial features

Once the facial features (nose tip and eyes) are well de-
tected, the next step consists in tracking the features in video
sequences. Object tracking is an important research field in
the domain of computer vision. In the literature, we find
three main families of approaches for object tracking. The
first one is point-based tracking [12, 16, 18]: at each frame,
the requested objects are detected and represented by points.
The correspondence of points is achieved according to the
previous state (position and motion) of the object. The sec-
ond one is kernel-based tracking [3, 7, 15]: the requested
object is modeled as a geometric template (triangle, rectan-
gle, ellipse, etc). Object tracking is achieved by calculat-
ing the kernel motion across the frames. This motion is of-
ten modeled as a parametric transformation such as affine
or similarity transformation (translation, scale, rotation).
The latter is silhouette-based tracking [1, 5, 13]: tracking
process is achieved by estimating the object region across
the frames. The information encoded inside the object re-
gion are used in order to model the object. The tracking is
performed by matching the silhouettes and object models.
Following an overview of the literature, we opted for

the Lucas-Kanade (LK) method [7]. More specifically we
used the pyramidal implementation of this method [2]. A
summary of the problem statement of the LK method is
described in the following.

Brief summary of the LK method: The LK algorithm
is a two-frame differential method for optical-flow based
motion estimation. This method is based on the assumption
that the optical flow is constant at the local neighborhood of
the considered pixel. Let us consider two gray-level images
I and J of size nx × ny. Taking a specific pixel �u(ux, uy)
from the first image I. The main goal of feature tracking is
to find the location �v = �u+ �d, on the second image J , such
that I(�u) ' J(�v). The vector �d corresponds to the image
displacement. It is estimated by minimizing the residual
function ε(�d), which is defined as follows [2]:

ε(�d) = ε(dx, dy) =

ux+ωxX
x=ux−ωx

uy+ωyX
y=uy−ωy

[I(x, y)

− J(x+ dx, y + dy)]
2. (5)

Note that the local neighborhood is of size (2ωx + 1) ×
(2ωy + 1). Typical values for ωx and ωy are 1, 2, 3, ...
pixels.
Between the well-known classical techniques, the least

squares method is the most used for the resolution of the
above system. However, the pyramidal implementation [2]
of the classical Lucas-Kanade algorithm remains the most
powerful solution to this problem.
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In Figure 10 we show experimental results of nose tip
tracking by selecting six different frames from the con-
sidered video. Note that the facial feature is well tracked
throughout the video sequences.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Nose tip tracking.

4. Analysis and interpretation of the cephalo-
ocular behavior

The main goal of our work is to study the cephalo-ocular
behavior of drivers. More specifically, we are interested in
the study of the visual research actions related to the ver-
ification of the blind spot when changing lanes and over-
taking. Recall that the blind spot is the space on each side
of a car that is not covered by the driver’s fields of vision
(including the fields of vision due to rear-view and wing
mirrors). In order to test if the driver is checking the blind
spots, we propose the following algorithm:

1. Detection of the facial features (nose tip and eyes) us-
ing the techniques described in subsections 2.1 and 2.2.

2. Tracking of the facial features using the method de-
scribed in section 3. The tracking process is accompa-
nied by the calculation of different distances (cf. Fig-
ure 11.(b) and (c)) separating the facial features. Those
distances allow us to identify the orientation of the
driver’s head. Based on the head orientations, we can

interpret the visual search actions of the driver. A de-
tailed technique for identifying the verification of blind
spots by the driver is described next.

3. Return to step 1 of the algorithm if we lose one of the
facial features.

(a)

(b) (c)

Figure 11. The visual research actions related
to the verification of the blind spots. a- Initial
position, b- Position due to the verification of
the left blind spot, c- Position due to the veri-
fication of the right blind spot.

The verification of the blind spot is accompanied by a ro-
tation of the driver’s head in the direction of the considered
path (cf. Figure 11.(b) and (c)). The angle of rotation estab-
lished by the driver’s head is inversely proportional to the
distance separating the two eyes. When the driver verifies
the blind spot, the angle of rotation of his head reaches its
maximum value. That corresponds to a minimum distance
separating the two eyes. Additionally, the coordinates of
two eyes allow us to know in which direction the driver is
currently watching. Based on these observations, we can ac-
curately identify the visual search action related to the veri-
fication of the blind spot. Note that two additional events al-
low us to identify the verification actions of the blind spots.
The first event is the loss of the left eye and/or the nose
tip when verifying the left blind spot. The second event is
the loss of the right eye and/or the nose tip when verify-
ing the right blind spot. The loss of the nose tip is due to
its confusion with the background when verifying the blind
spot. While the loss of the eye is due to its partial or total
occlusion in the video frame. In Figure 12, we show test re-
sults obtained using a cascade of boosted classifier and the
pyramidal Lucas-Kanade method for facial features detec-
tion and tracking. The loss of nose tip and left eye due to the
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verification of the left blind spot is shown in Figure 12.(d).
The loss of the right eye due to the verification of the right
blind spot is shown in Figure 12.(h).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. The verification of the blind spots
is accompanied by the loss of facial features
(nose tip and/or eyes). a,e- First detection of
facial features. b,c,f,g- Different steps of the
tracking process. d- Loss of nose tip and left
eye. h- Loss of the right eye.

In Figure 13, we show test results obtained using the
proposed system. Following the loss of facial features, the
system triggers the detection process and generates a new
event for reporting that the driver is probably verifying the
blind spot. Additionally to the study of the cephalo-ocular
behavior of driver while verifying the blind spot, the sys-
tem is able to support other events, such as the visual ver-
ifications at rear-view and wing mirrors. Events resulting
from the identification and analysis (using our system) of
the cephalo-ocular behaviour of drivers will be used by a
Kinesiology research group in order to retrain older drivers
in a safe-driving context. The introduced system serves as a
basis framework for a new system involving three cameras
(cf. Figure 14).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Test results of the introduced
framework. a,e- First detection of facial fea-
tures. b,c,d,f- Different steps of the tracking
process. g- The loss of facial features trig-
gers the detection process. h- Tracking of fa-
cial features following the second detection.

5. Conclusion

In this paper we introduced a new computer vision
system dedicated to the analysis and interpretation of the
cephalo-ocular behavior of a driver. The proposed system
include three main steps. The first step consists in the detec-
tion of the most important facial features, namely nose tip
and eyes. The detection process is achieved using a cascade
of boosted classifiers based on the extended set of haar-like
features. The second step deals with the tracking of those
facial features. For that we call upon the pyramidal Lu-
cas Kanade method for optical flow estimation. The last
step is devoted to the identification of the visual research
actions related to the verification of the blind spots using
events resulting from the second step. The analysis and in-
terpretation of other visual research actions of driver is also
possible to achieve. All of the experiments confirm both the
accuracy of the proposed system and its usefulness.
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Appendix:
In Figure 14 we show the configuration of our driving

simulator. A driver is seated in a mock-up car and uses nor-
mal controls, such as steering wheel and clutch. The driving
scenario is projected on the screen in front of the driver.
The driver’s actions are recorded by the simulator system
in order to calculates the position of the virtual vehicle car.
Three cameras (1, 2 and 3) are used to film the driver while
the fourth one is used to film the simulator’s screen. Note
that the scene is illuminated with three infrared spots.
In our future work we will develop a new system involv-

ing the three cameras filming the driver. The main challenge
is the tracking of the driver’s facial features across the three
cameras (left, center and right). That allows the estimation
of the pose (position and orientation) of the driver’s head.

(a)

Figure 14. Configuration of the driving simu-
lator.
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