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Abstract—We present a global algorithm for drift-free align-
ment of multiple range scans of “thin” data into a single point
cloud that is suitable for further processing, such as triangular
meshing and volume calculation. We consider two sets of non-
rigid data: synthetic vascular data and real Arabidopsis plant
data. Our method builds on the coherent point drift algorithm,
and aligns multiple point clouds into a single 3D point cloud.
The plant data was acquired in a growth chamber, where the
fan caused jittering in both the branch and leaf data. For
each scan, we construct a target scan from the centroids of
its Mutual Nearest Neighbours (MNN) in all other scans and
iteratively register to this, as opposed to registering pairwise
scans sequentially. We have have adapted MNN for use in non-
rigid scenarios, producing a method that will will not degrade
as more scans are registered, and produces better results than
sequential pairwise registration.

Keywords-Multiview Reconstruction; 3D Plant Growth; Thin
Structures; Coherent Point Drift; Mutual Nearest Neighbour;

I. INTRODUCTION

Building a 3D model is extremely useful for many prac-

tical applications where inferring measurements about the

shape or size of an object is a requirement. With the rapid

acceleration of hardware capability in terms of CPU power,

storage and 3D scanners, we can now capture huge amounts

of data and the fidelity of the resultant models is constrained

by the quality of merging/reconstruction algorithms. Due

to recent advancements of robotic technologies and low

cost laser scanners, building real time automated systems

is becoming possible for plant science and agricultural

applications, where a major task is to build a 3D model of

the plant to analyze different biological properties. However,

the complex structure of a plant makes the problem of

aligning multiple views extremely hard, unlike building a

3D model of a rigid object like Stanford bunny. In medical

robotics, automatic analysis of medical images is a crucial

step: a common application is to build a 3D model of

thin artery data from multiple tomographic or CT images.

This involves pairwise registration and alignment of different

scans. However, registration of vascular data is a challenging

problem and despite several years of research ([23], [7]), still

it remains an open problem in medical imaging community.

One motivation of this paper is to address the problem of

aligning multiple views of thin, complex structures like plant

or artery data.

Figure 1. A subset of the views of the synthetic vascular data. We take
one scan and then apply a set of random, non-rigid deformations to obtain
our dataset.

We introduce a drift-free algorithm for merging non-rigid

scans, where drift is the build-up of alignment error caused

by sequential pairwise registration. Sequential pairwise reg-

istration entails the alignment of each scan to its neighbour,

followed by the alignment of another neighbouring scan to

the resultant scan, and so on. The error between any two

scans accumulates the error from the previously merged

scans used in the current merging.

Inspired by Toldo et. al.’s work [25] in rigid registration,

we solve this problem by constructing an “average” scan to

which we register. For a scan X , we find the set of points

that are Mutual Nearest Neighbors (MNN) for each point

in the scan from every other scan. That is, we compute

the MNNs for each point in X for each scan individually,

and we then combine them into a single scan that is

composed of the calculated centroids from each point. We

describe this in Section III. To overcome the limitations

of 2D image-based plant analysis (lack of accurate spatial

and volumetric information [17]), 3D imaging is essential

for measuring various plant parameters that indicate plant

growth. A significant body of literature has been reported

on plant growth analysis. For example, Clark et. al. [6]

proposed a high throughput software system for analyzing
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the root structure of a plant. Paproki et. al. [17] demonstrated

a 3D approach for measuring plant growth in vegetative

stage. They captured data as high resolution 2D images and

generated 3D mesh data from these images. Recently, Paulus

et. al. [18] used 3D laser scanning technology to perform

organ classification of plants. Li et. al. [13] proposed a

technique to track budding and bifurcation of plants from

raw point cloud data.

In order to obtain the 3D structure of an object, a range

scanner is used to capture point cloud data from multiple

viewpoints. These datasets are merged together and then tri-

angulated to build a polygonal mesh of the object. However,

most of the current methods for doing this concentrate on the

optimization involved in reconstructing standard 3D models,

with the constraint that the calculation be computationally

inexpensive. Here, we are interested mainly in modelling

complex plant objects and, as well, have to consider the non-

rigidity of the plant caused by the inter-scan movement of

the object due to weak and uncontrollable wind currents in

the growth chamber. We are investigating how well a plant’s

volume is a function of its growth as a long term goal.

Registration is a fundamental task in 3D reconstruction,

where the aim is to find a coordinate transformation to align

source and target views (referred to as pairwise registration).

The basic Iterative Closest Point (ICP) [2] algorithm finds a

rigid transformation that registers two views using local op-

timization. Several variants and applications of the classical

ICP and were reported in the literature, including [27], [29],

[14], [19], [20], [9], [3]. Registration of the set of plant range

scans, using the existing methods whose implementations

are available, were poor because of the inter-scan movements

between different parts of the plant range images (the plant

is not rigid). Recently, Gaussian Mixture Models (GMM)

have been used for non-rigid registration. Our plant data

(Arabidopsis plant) is extremely sparse in the flowering

stage (with long stems, a few leaves and flowers), so it

is necessary to use a large area of support to construct

the GMMs to smooth the solution space, and as a result,

the registrations are not sufficiently good to pass a visual

inspection. We have concluded from our experimental work,

that Myronenko et. al.’s Coherent Point Drift (CPD) [16],

[15] method works best for aligning two point clouds of

the plant data. However, Myronenko et. al. didn’t consider

aligning more than two views. We propose an algorithm

based on CPD which can align many views with minimal

error. Our data (of the Arabidopsis plant) consists of 12

views of the plant, uniformly sampled at 30◦ increments,

thus allowing a complete 3D reconstruction of the plant.

We roughly align adjacent point clouds from adjacent range

scans by performing sequential pairwise registration and

then use our global method to create the final point cloud.

II. PREVIOUS WORK

Among several robust methods for registration, some

notable work can be found in [5], [26], [28], [24]. These

algorithms belong to a similar class of approaches. We found

that various non-rigid registration methods are reasonably

effective in registering adjacent scans, but any attempt to

merge multiple registrations into a single point cloud was

problematic.

Fitzgibbon [8] modified ICP by deriving an error function

between the model and target data which is minimized by

the Levenberg-Marquardt algorithm (LMICP). The energy

is formulated in terms of the L2 distance of the closest

point in the data to each point in the model, but he instead

computed distances to each point in a discrete volume, thus

allowing to compute the spatial derivatives needed for energy

minimization. This approach makes the registration process

more general than ICP. The method requires rigid data and

works well on the standard Stanford Bunny dataset (which

satisfies this constraint). Applying the algorithm to our plant

data yielded poor results.

The Point Cloud Library (PCL) [1] provides a method

for point cloud alignment that is based on Rusu et. al.’s
method [22], [21] for Fast Point Feature Histograms (FPFH).

Rusu et. al.’s contribution is in finding efficient matching of

features between two sets of point clouds. Each point in a

dataset is assigned multiple informative labels as features

and these are then used to establish correspondence, thus

resulting in a good initial alignment for registration. The

geometrical information (16 dimensional) for the neighbour-

hood of each point is extracted and stored in histograms. The

method has also been shown to be robust to pose invariance.

Unfortunately, this method still does not overcome the

difficulties associated with iterative algorithms like ICP. We

have implemented Rusu et. al.’s algorithm using PCL. The

results are shown later in this section.

Some robust rigid registration methods have used GMM:

Jian and Vemuri [11] (GMMReg) proposed an approach to

minimize the discrepancy between two Gaussian mixtures by

minimizing the L2 distance between two mixtures. However,

they can’t handle large datasets. Their experimental results

are for the downsampled Bunny dataset. The algorithm does

not work for our plant dataset (over 2 million points). In

fact, for complex plant structures, it is impossible to retain

the geometry of the model by downsampling the over 2
million points (to about 5000 points, which the algorithm

can process).1 The plant under consideration has lot of

branches and has a canopy of leaves at its base, which

makes the geometry more complicated. The Stanford Bunny

can be approximated by a few hundred points, but for

plant structures using such a small number of points is not

possible. Hence, we could not apply this algorithm in our

1Correspondence between the authors and ourselves revealed that this
downsampling could not be avoided.
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plant data.

The Coherent Point Drift (CPD) registration method

was proposed by Myronenko et al. [16], [15]. Their

method is based on GMM, where the centroids are moved

together. Given two point clouds, M = (x1, x2, ..., xm)T

and S = (y1, y2, ..., yn)
T , in general for a point

x, the GMM probability density function will be

p(x) =
∑M+1

i=1 P (i)p(x|i), where:

p(x|i) = 1

(2πσ2)D/2
exp[−||x− yi||2

2σ2
]. (1)

Instead of maximizing the GMM posterior probability, the

negative log-likelihood function can be minimized to obtain

the optimal alignment:

E(θ, σ2) = −
N∑

j=1

log
M+1∑

i=1

P (i)p(x|i). (2)

They iteratively use the Expectation Maximization algo-

rithm to optimize the cost function. The algorithm is also

robust to noise. We have used this algorithm and have run

the same 2 adjacent point clouds of our plant data as for the

other algorithms we tested. The results indicate that CPD

works best among all other tested algorithms for registering

plant data.

We present a comparative framework to perform a quan-

titative comparison in registering two point clouds. First, we

show our experimental results on the Bunny data (downsam-

pled to 376 points). We show our results on real Arabidopsis

plant data. The results are shown in Figure 2 for the Stanford

Bunny dataset and Figure 3 for the real Arabidopsis plant.

To perform quantitative analysis of results we manually

chose a small number of 3D points in the 2 scans that we

believe are correct correspondences. For the Bunny and Ara-

bidopsis plant data, we acquired 18 and 44 correspondences

respectively. Using that ground truth, we computed the av-

erage error rate as the L2 distances (in mm) between source

and target points, where the correspondence was manually

measured for the different algorithms. These are listed in

Table I. We can observe that for Bunny datasets, almost

Algorithms
Datasets FPFH LMICP GMMReg CPD
Bunny 0.149 0.046 0.012 0.014
Arabidopsis Plant 9.661 4.114 N/A 2.312

Table I
QUANTITATIVE RESULTS FOR DIFFERENT ALGORITHMS AND DATASETS.

all the algorithms work well. However, for real Arabidopsis

data, the error measures are considerably higher. We note

that while collecting the ground truth correspondence points,

there may have been some errors. Although it is difficult to

capture the exact error, we expect the error to be in the

range 2-5 mm for each point. As we can see, CPD works

best among all other methods in processing plant data.

III. PROPOSED METHOD

We first approximately align the scans sequentially, and

then we use a global method to refine our result. The global

method involves registering each scan Xi to an “average”

shape, which we construct using the centroids of the mutual
nearest neighbours (MNN) of each point. For Xi, we use

scans Xj where j �= i to obtain the average shape Ycent from

the centroids, and Xi is then registered to this average shape.

This is repeated for every scan until the result converges.

We modify Equation (1) to perform global registration

p(x|i) = 1

(2πσ2)D/2
exp[−||x− ŷi||2

2σ2
]. (3)

where ŷi ∈ Ycent are the points in the target scan Ycent ,

which is constructed from all scans other than itself.

For a pair of scans X and Y , we say that a point xi ∈ X
and yj ∈ Y are MNN if xi = xin and yjn = yj , where

xin = min(|xp − yj |), ∀xp ∈ X, (4)

and

yjn = min(|yq − xi|), ∀yq ∈ Y. (5)

For each point xj in scan Xi, we find the set of points

xk from all scans other than Xi that are mutual nearest

neighbours of xj . For each of these sets of points xk, we

find the centroid

ycent =
n∑

i

xki

n
. (6)

We register Ycent, the set of centroids calculated for each

xj , to scan Xi.

Although CPD alone is effective in registering pairs with

a fair amount of overlap, when registering multiple scans,

especially scans that have not been pre-aligned, our method

achieves a much better fit both visually and quantitatively

than CPD by itself, utilizing sequential pairwise registration.

Our method is a two step process, beginning with aligning

the scans approximately. We then register a single scan to

“average” shape, constructed from all other scans, and up-

date the set to include the newly registered result, performing

the same process with all other sets of scans. In this way,

we avoid accumulation of merging error.

A. Approximate Alignment

We capture a set of scans around the plant at 30◦

increments. After acquiring them, we first solve for the rigid

transformation T0 = (R0,�t0) (where R is a rotation angle

and �t is a translation vector) between the the first scan

(X0) and the second scan (X1) using the rigid version of
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Figure 2. Pairwise registration results for two scans of the Stanford Bunny. Top row: original two views, Bottom row: results obtained using Rusu et al.
(FPFH) [22], Fitzgibbon (LMICP) [8], Jian and Vemuri (GMMReg) [11] and Myronenko and Song (CPD) [15].

Figure 3. Pairwise registration results two scans of the real Arabidopsis plant data. Top row: the original two views. Bottom row: results obtained using
Rusu et al. (FPFH) [22], Fitzgibbon (LMICP) [8] and Myronenko and Song (CPD) [15].

CPD. After we solve for �t0, for each scan Xi, we apply the

transformation i times as follows:

X̂i = RiXi + �ti, (7)

where Ri =
∏i

k=0 R0 and �ti =
∑i

0
�t0. Our new set

of transformed scans X̂ should now be roughly aligned.

We use this method to obtain a rigid registration. The

initial registration is important when the pair of scans to

be registered has minimal overlap.

The approximately aligned scans can be seen in Figure 4.

B. Global Non-Rigid Registration via MNN

Once the initial registration is complete, we use CPD

in conjunction with MNN to recover the non-rigid defor-

mation field that the plant undergoes between the capture

of each scan. At this point, the scans should be approx-

imately aligned to one another. We now construct the

centroid/average scan and then register to it.
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Figure 4. 12 scans of the Arabidopsis plant, prior to registration, but with
rotation and and translation pre-applied.

1) Global Registration: We use Algorithm 1 to merge all

scans, where MNN(·) computes the mutual nearest neigh-

bour for each point in scans Xi and Xj and the centroids

function likewise takes the centroids computed for each

point in each scan and combines them into one average scan

using Equation (6). For each point in scan Xi, we find the

single nearest neighbour from all other scans and use the set

of distances to compute the L2-norm.

Algorithm 1 MNN Registration

Require: X = [X1, · · · , Xn], where each Xi is a range

scan that has been approximately adjusted. A predefined

tolerance tolmax.

tol =
∑N

i=1 error L2(Xi)/N
while tol < tolmax do

for i = 1 to N do
for j = 1 to N do

if j �= i then
Yicent

= MNN( Xj , Xi )

end if
end for
Ycent = centroids( Y1cent

, · · · , YNcent
)

Xi =register cpd( Ycent, Xi)

end for
end while

IV. RESULTS

A. Plant Data

Figure 5 shows all 12 scans, merged into a single point

cloud after subsampling each scan. Each color in the point

cloud represent a different scan. Despite the noisiness of the

range scans from jitter, our method successfully performed

the 12 view registration, resulting in a single point cloud

that accurately captures the shape of the Arabidopsis plant.

By ensuring that the scans are all approximately registered

before proceeding (for both methods), we minimize the

likelihood that erroneous parts of the point cloud datasets

will bias the motion of a scan that is being registered. Figure

IV-A displays the resultant error between the first scan in

the set and all subsequent scans. First, we see that the error

is lower for scans that have more overlap (the first scan

shares a fair deal of overlap with the last, for example) for

both sequential pairwise and our proposed methods. We see

that our method always outperforms its pairwise counterpart.

Sequential registration still rendered a useful result, though

as the number of scans grows, the drift would theoretically

increase.

Figure 6. MNN versus sequential pairwise registration.

B. Synthetic Vascular Data

We further demonstrate the efficacy of our method on syn-

thetic vascular data. We take a 3D point cloud of synthetic

veins, as generated by VascuSynth [10] and apply a non-

rigid deformation to the point cloud to create a total of 20

scans. This was performed using the deformation method

provided with the CPD software. We use the parameters

sampling = 0.1, power = 3 and λ = 4. Initially,

σ = 5 and we increase its value by 0.5 for each successive

deformation. This gives us a new set of point clouds, as

seen in Figure 7. The magnitude of this transformation is
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Figure 5. 12 scans captured in 30◦ increments about the plant and then merged into a single point cloud using MNN. Shown from two viewpoints, front
facing on the left and from above on the right.

Figure 7. 20 synthetic scans of vascular data merged into a single point cloud using MNN, as seen from two viewpoints, front and back.

substantially larger than those created by the wind in the

Arabidopsis set. We utilized more scans than we did with

the Arabidopsis in hopes of verifying our hypothesis that

pairwise registration gets progressively worse as we add

more scans, though the effect of drift is partially obscured

by the fact that the deformation increases between the first

and each successive scan.

The L2 error of the merged scans using sequential pair-

wise was higher than MNN and the resultant shape no longer

looked like the initial one when we used the default CPD

parameters (λ = 1, β = 1), where λ controls the “stiffness”

and β controls the point “spread”. In order to maintain the

shape of the veins, we couldn’t use a value of λ < 70. The

quantitative results for the pairwise sequential method in

Figure 8 were calculated using λ = 90, which still ends up

rendering a badly warped result. In addition, as we increased

the value of λ, the drift increased quickly.

By contrast, MNN performs very well on this data, as seen

in Figure 7. Quantitatively, we have shown that it easily

outperforms sequential pairwise registration, and that our

method limits drift.
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Figure 8. MNN versus sequential pairwise registration on vascular data,
registering the first scan to each of the subsequent scans.

V. CONCLUSION

We have presented an approach to merge multiple scans

into a single point cloud. Our plan is to triangulate this cloud

into a triangular mesh and measure the volume of the plant.

We hope that the quantitative volumes of the plant over

time comprise a growth metric for the plant that is both

non-invasive and non-contact. We have chosen, from our

experience, the best existing algorithm to work on sparse

plant data and built our model on top of it: it can handle

non-rigid objects with noise. One possible future research

direction may be computing a quantitative analysis of how

many scans should be sufficient to reconstruct the plant

within tolerable range (for example, using 8, 6 or 4 scans

instead of 12 scans), and we are also working on even faster

methods for registration, using approximations of CPD. We

also intend to use the junction points proposed by Chaudhury

et. al. [4] to obtain an initial alignment more efficiently.
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