
Detection and Characterization of Multiple Motion PointsWeichuan Yu1 Kostas Daniilidis2 Steven Beauchemin2 Gerald Sommer11Institute of Computer Science 2GRASP LaboratoryChristian Albrechts University University of PennsylvaniaPreusserstrasse 1-9 3401 Walnut StreetD-24105 Kiel Philadelphia, PA 19104-6228Germany USAEmail: wy@ks.informatik.uni-kiel.deAbstractThe computation of optical ow is a well studiedtopic in biological and computational vision. However,the existence of multiple motions in dynamic imagerydue to occlusion or even transparency still raises chal-lenging questions. In this paper, we propose an ap-proach for the detection and characterization of oc-clusion and transparency. We propose a theoreticalframework for both types of multiple motions whichexplicitly shows the di�erence between occlusion andtransparency in the frequency domain. Then, we em-ploy an EM-algorithm for the computation of one ortwo image velocities and a simple test for the detec-tion of occlusion. Our approach di�ers from otherEM-approaches which blindly assume the superposi-tion of two models in the spatial domain without pro-viding with a separate formal model for occlusion. Wetest and compare the characterization performance onsynthetic and real data.1 IntroductionIt was early recognized in the history of optical owestimation that motion boundaries necessitate a spe-cial treatment. Due to the aperture problem, owcomputation apply assumptions on the behavior ofthe optical ow in the neighborhood of the consideredpoint. Such assumptions are either explicit in area-based techniques or implicit in �lter-based schemeswhere the addressed neighborhood is the �lter sup-port. In global approaches of optical ow the assump-tions are encoded in the regularization term. Regu-larization approaches were also the �rst in address-ing the problem of motion boundaries by penalizingow smoothness at hypothetical positions of motionboundaries [15]. We will not delve into this group ofow segmentation algorithms which later followed theparadigm of anisotropic di�usion [17]. A second groupof approaches is based on segmenting regions where

parametric models of ow can be �tted [18, 7, 12, 23].Due to space limitations the reader is referred to [4]for a survey of ow estimation methods.We are interested here in local techniques for the de-tection of points involving multiple motions and theirclassi�cation in occlusion and transparency points.Most of the local approaches consider this problemas the �tting of superimposed models or as the vio-lation of a parametric model. Approaches computingthe local spatiotemporal grayvalue tensor [19, 16] testthe tensor's eigenvalue to detect points of multiple mo-tions whereas Black and Anandan [6] apply robust es-timation in order to detect such points. The majorityof these approaches relies on the Brightness ChangeConstraint EquationIxu+ Iyv + It = 0 (1)where Ix, Iy , and It denote the spatiotemporal par-tial derivatives of the image intensity and (u,v) isthe optical ow vector. Looking at the case of mul-tiple motions as a simultaneous problem of estima-tion and grouping researchers have recently elaboratedalgorithms based on the Expectation-MaximizationPrinciple [1]. Whereas the Maximization step is theusual maximum-likelihoodparameter estimation giventhe assignment of points to groups, the Expectationstep is regrouping the points by updating member-ship weights. Several authors [13, 22] applied the EM-algorithm on the BCCE model (1) or on already com-puted ow vectors. This process is equivalent to �ttingtwo planes through the origin in the (Ix; Iy; It)-space.However, this �tting does not reveal what happens inreality. In case of occlusion, it can be shown that the(Ix; Iy; It)-space does not contain only two planes. Incase of transparency we can hardly assume that the in-tensity pro�le is di�erentiable. A recent approach byFleet et al. [5] gives the best explicit model of occlu-sion for the spatial domain by applying the steerability



theory in the detection of the occlusion boundary as astep edge in both components of the optical ow �eld.The underlying theoretical framework for the ap-proach in this paper relies on spectral analysis andwas �rst presented in [3] based on observations in [9].Another framework for multiple motions formulatedin the frequency domain is the superposition princi-ple of Shizawa and Mase [21] which, however, doesnot discriminate between occlusion and transparency.We start with an illustration of the di�erence betweenocclusion and transparency in Fig. 1. First, by iso-lating a spatial window we observe that occlusion ismore local than transparency. In case of transparencythe entire window contains two motions. Second, thetransparency is the addition of two models whereasthe occlusion involves a step-function.= += +Figure 1: Although occlusion or transparency can bedecomposed into multiple layers they are based on dif-ferent decomposition principle. Top: One frame ofthe occlusion sequence is decomposed into two layersby a Heaviside unit step function. There is motiondiscontinuity only at the boundary. Bottom: Oneframe of the transparency sequence is a simple super-position of two layers. Multiple motions exist in theentire window.In this paper, we give an exact model of occlu-sion and transparency in the frequency model. Theonly existing counterpart in the literature of spatialapproaches is [5]. We gain an insight into the distor-tion due to occlusion (Sec. 2). We employ an EM-algorithm for the recovery of the two dominant mo-tions (Sec. 3). Then, we apply a distortion existencetest in the frequency domain which we verify with anadditional test in the spatial domain (Sec. 4). We showthe performance of the algorithm in synthetic and realsequences and compare it with the performance of apurely spatial EM-algorithm (Sec. 5).2 Spectrum of Multiple MotionsThe spectrum of multiple motions was �rst ana-lyzed by Fleet and Langley [9]. Assuming that theocclusion boundary is a characteristic function �(~x)they model the occlusion in the spatial domain as fol-

lows:I(~x; t) = �(~x�~v1t)I1(~x�~v1t)+[1��(~x�~v1t)]I2(~x�~v2t)(2)where I1(~x) is a 2D occluding signal moving withvelocity ~v1 = (v1x; v1y)T and I2(~x) is a 2D occludedsignal moving with velocity ~v2 = (v2x; v2y)T .Beauchemin and Barron [3] were the �rst who ex-tracted an exact model in the frequency domain. Theymodel the occlusion in the spatial domain with a Heav-iside unit step function U (~x) for �(~x):U (~x) = � 1 ~xT �̂ � 00 otherwise (3)where ~x denotes 2D spatial Cartesian coordinates and�̂ is a unit vector parallel to the gradient of the oc-cluding boundary.We denote the spatial frequency vector as ~� =(!x; !y)T and the temporal frequency as !t. Then,the Fourier transform of the image sequence reads~I(~�; !t)= ~U (~�)�(~�T~v1 + !t) � ~I1(~�)�(~�T~v1 + !t)+~I2(~�)�(~�T~v2 + !t)� ~U (~�)�(~�T~v1 + !t) � ~I2(~�)�(~�T~v2 + !t) (4)where � means convolution and~denotes the Fouriertransform of the corresponding signal. The spectrumof the Heaviside unit step function is given by~U (~�) = 2�[��(j~�j) + �(~�T �̂?)i~�T �̂ ] (5)where �̂? denotes a unit vector perpendicular to thenormal �̂ of the occluding boundary. Taking the prop-erties of the impulse function into account we obtain(see Appendix for detail):~I(~�; !t)= [2�2~I1(~�) +A(~�)]�(~�T~v1 + !t)+(1� 2�2)~I2(~�)�(~�T~v2 + !t)+ B(~�) (6)with A(~�) = 2�i~�T �̂ � ~I1(~�) (7)B(~�) = 2�i~�T �̂ � ~I2(~�) (8)The �rst two terms of expression (6) are two orientedplanes passing through the origin of the frequencyspace. Their normal vectors namely (u1; v1; 1) and(u2; v2; 1) are the velocities of the two signals. The sec-ond is the exact spectrum of the occluded signal butthe �rst contains an additional distortion term A(~�)



on the plane of the occluding spectrum. However, weare interested here in the orientation of the plane andthe term A(~�) does not disturb the orientation. Actu-ally, A(~�) strengthens this spectral plane. Therefore,we do not consider it as distortion. The main discrim-inating term is the third one, B(~�), which lies outsideof the two motion planes. We observe that this distor-tion term due to the occlusion is independent of thevelocities. It depends on the normal of the occludingboundary and the spectrum of the occluded signal.If the energy of the distortion term B(~�) is veryhigh we are not able to recognize the two planes. Thecritical factor in the amplitude of B(~�) is the hyper-bolic term 2�i~�T �̂ . If ~� tends to zero, the amplitudeof B(~�) will be larger than that of the second term(1� 2�2)~I2(~�)�(~�T~v2 +!t) and we will not be able toestimate the parameters of the occluded signal. Fortu-nately, 2�i~�T �̂ reduces very quickly with the increase ofj~�j. In most regions of the spectral domain the ampli-tude of the distortion is much less than that of signals,as shown in Fig. 2. Therefore, we may consider onlythe spectrum above a lower bound for the frequencyand identify the two dominant planes.Transparency is a special case of occlusion since wecan simply substitute �(~x � ~v1t) with a real constant� 2 (0; 1). The corresponding spectrum is then char-acterized by two oriented planes without any distor-tion (see Fig. 2):~I(~�; !t) = �~I1(~�)�(~�T~v1 + !t)+(1 ��)~I2(~�)�(~�T~v2 + !t) (9)We have provided with an exact model for occlu-sion in the frequency domain and described the termsthat discriminate occlusion from transparency. Theocclusion distortion term is independent of the ve-locities and depends only on the spatial orientationof the motion boundary and the spectrum of the oc-cluded signal. Due to the hyperbolic nature of thisterm the main energy proportion is on the two motionplanes even in the case of occlusion. This model canbe viewed as a generalization of the spatiotemporalenergy model of single motion [2, 11]. The remain-ing task is to estimate the parameters of the motionplanes and decide whether it is the case of an occlusionor not.3 Estimation of Multiple VelocitiesWe are going to apply the EM-algorithm in thefrequency domain. In order to avoid the block ef-fect of the discrete Fourier transform we perform aFourier-Transform windowed �rst by a Gaussian func-tion which results in nothing else than a Gabor func-tion with decoupled support and central frequency.
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yFigure 2: The spectra of occlusion and transparencyhave similar properties. (A): A frame of the randomdot occlusion sequence. The occluding signal is mov-ing with the speed (1; 1) and the speed of the occludedsignal is (2;�1). (B): The energy 3D-volume of thespectrum of occlusion. The origin lies in the middleof the drawing. Compared to the dominant planesthe distortion is almost negligible. (C): A frame ofthe random dot transparency sequence. The motionparameters are the same as those in (A). (D): Theenergy spectrum of transparency. The high frequencyartifact at one side of the spectrum is due to the pe-riodic property of the DFT.In order to alleviate the e�ects of the hyperbolicdistortion term at low frequencies we multiply the en-ergy spectrum with a 3D low-stop function:LS(~�; !t) = 1�+G(0; �16 ; ~�; !t) � 1�+ G(0; �16 ; 0; 0; 0)where G(0; �16 ; ~�; !t) denotes a 3D Gaussian functionin the spectral domain with mean value of zero andvariance of �16 . The parameter � is set to 0:1. Wemay reduce � to further amplify high frequency com-ponents.We obtain, thus, a set of data points in the spectraldomain associated with the amplitude of the Fourier-Transform. Their amplitudes can be viewed as a massdensity in �tting the plane to these points. We de-note with Ai the amplitude of the i-th point in thedata set. We assume the existence of two unknownmotions (u1; v1) and (u2; v2). In case of one motion,we will observe that the EM algorithm converges toone solution.We choose arbitrary initial values (u10; v10) and(u20; v20). In the Expectation step we assign theweights Wi1 and Wi2 to the i-th point as following



according to the corresponding squares of the residu-als [14]: Wi1 = 11 + e�Ri2�Ri1�2 (10)Wi2 = 11 + e�Ri1�Ri2�2 (11)where Ri1 = A2i (!ixu1 + !iyv1 + !it)2 (12)Ri2 = A2i (!ixu2 + !iyv2 + !it)2 (13)where � is a parameter to adjust the tolerant level ofthe residual. The weights are simple applications ofthe Bayes rule which give the membership probabilityof every point.In the Maximization step we solve the following twolinear systems in order to update (u1; v1) and (u2; v2)where the indices i1 and i2 run over all points:� Wi1Ai!ix Wi1Ai!iy Wi1Ai!it �0@ u1v11 1A = 0(14)� Wi2Ai!ix Wi2Ai!iy Wi2Ai!it �0@ u2v21 1A = 0(15)The EM-algorithm consists of subsequent iterationsof the E- and M-step, respectively, until there is nosigni�cant di�erence in the parameter estimates.4 Localizing Occluding BoundaryAfter estimating the parameters of the two motionswe would like to know which kind of multiple motionit is. If it is occlusion, we want to further localize theoccluding boundary.For all points (!ix; !iy; !it) outside the two motionplanes which satisfyj!ixuj + !iyvj + !itj > � j = 1; 2 (16)we count the number Nd of points with their ampli-tudes above a threshold. Since the distortion dependson the spectrum of the occluded signal ~I2(~�) the num-ber Nd varies dramatically with ~I2(~�) as well. Forexample, if I2 is a cosine image sequence then ~I2(~�)has only two spectral components and we have alsoa very small Nd. In order to solve this problem wecount the number Np on the planes as well and choosethe relative ratio Ra = NdNp as our criterion. Ra willbe much larger in case of occlusion than in case oftransparency since all energy of the transparency lieson the dominant planes.

It is di�cult to choose a suitable threshold withouta priori knowledge. But we can bypass this problem bysetting a series of thresholds and observing the varia-tion of corresponding Ra. With the increase of thresh-old, Ra will decrease in case of occlusion whereas itremains almost the same in case of transparency.To enhance the robustness of a decision for occlu-sion we perform also a test on the spatial coherencebased on observations in [8, 22, 12]. In the spatialdomain we consider three successive frames from theimage sequence and denote them with Ii�1, Ii, andIi+1. Then, we calculate the di�erence between twoframes Ii�1 and Ii using estimated speeds:�I1 = Ii(x; y) � Ii�1(x+ u1�t; y + v1�t)�I2 = Ii(x; y) � Ii�1(x+ u2�t; y + v2�t)If the multiple motion is occlusion, we will observeone region with zero intensity in each one of �I1 and�I2 and these two regions are complementary in co-ordinates. Their intersection localizes the occludingboundary Bi. Repeating the same process on framesIi and Ii+1 we obtain the shifted boundary Bi+1. Us-ingBi and Bi+1 we can determine the moving speed ofthe occluding boundary and thus segregate occludingand occluded signal (Fig. 3). If the multiple motionis transparency, we can not observe any region with-out error in �I1 and �I2 (Fig. 4). This fact can beused to distinguish occlusion and transparency. Thereader may ask why this cumbersome multiple crite-ria. The answer lies in the limited resolution of thespectral domain. Although the de�nition of occlusionin the spectral domain is exact we can not rely on thedecision for occlusion without a subsequent check inthe spatial domain which fortunately is not computa-tionally expensive.5 ExperimentsIn this section we present experimental results forour algorithm on occlusion detection. Without excep-tion the spatiotemporal support in all the experimentsis a cube of 32 � 32 � 32 pixels. For comparison wealso apply the spatial EM algorithm based on equa-tion (1). In order to obtain Ix, Iy, and It we convolvethe cube with the �rst spatiotemporal derivatives ofa 3D Gaussian function. Then we build the squaredresiduals R0i1 and R0i2 as following:R0i1 = (Iixu1 + Iiyv1 + Iit)2 (17)R0i2 = (Iixu2 + Iiyv2 + Iit)2 (18)Replacing Ri2 and Ri2 in equation (12) and (13) withR0i1 R0i2 we build the weights W 0i1 and W 0i2 in the spa-tial domain. Correspondingly, the linear system turns



Figure 3: Application of spatial and spectral EM-algorithm on random dot occlusion sequence. Top:Three consecutive frames of the sequence. The oc-cluding and the occluded signals moving with (1; 1)and (1;�1) (pixel/frame), respectively. Middle: Thespectrum of the cube shown with three sections. Theorigin lies in the middle of the image. From left toright: !y�!t, !y�!x, and !x�!t section. The sectionsgive indications for the existence of two planes in thespectral domain. We apply the EM-algorithm with� = 0:1 and initial speeds (1:2;�0:1) and (0:8; 0:3).The results using the spatial EM are (0:980;�0:996)and (0:999; 0:962) and the speeds estimated using thespectral EM are (0:999; 1:001) and (0:996;�1:001).Bottom: �I1 and �I2, the two complementary re-gions with zero value are bounded by the occludingboundary.Figure 4: In the case of transparency with the samemotion parameters there is no region with zero valuein �I1 and �I2. Left: �I1. Right: �I2.out to be:� W 0i1Iix W 0i1Iiy W 0i1Iit �0@ u1v11 1A = 0 (19)� W 0i2Iix W 0i2Iiy W 0i2Iit �0@ u2v21 1A = 0 (20)Fig. 3 shows an example of applying both the spec-tral and the spatial EM-algorithms to segment di�er-

ent motions in a random dot occlusion sequence. Theoccluding signal is moving with (1; 1) (pixels/frame)and the occluded signal has a speed of (1;�1). Bothspatial EM and spectral EM converge after 6 itera-tions. The occluding boundary is displayed as inter-section of the zeros regions in �I1 and �I2. The spec-tral EM-algorithm can handle transparency as wellwhereas the spatial EM can not. We prove this conclu-sion using a transparency random dot sequence withthe same motion parameters. The spatial EM willnot recognize the transparency as multiple motions:Both speeds converge to (0:999; 1:000). On the con-trary, the spectral EM converges to (0:998; 0:999) and(0:997;�0:998) after 5 iterations. In Fig. 4 are thecorresponding �I1 and �I2 for transparency. Thereis no region without error. To test the existence ofocclusion in the spectral domain we set � = �4 and aseries of thresholds to 0:1% and 1% of the maximalamplitude in the spectral domain. The correspondingRa are 1:89 and 0:28 in case of occlusion and 0:29 and0:25 in case of transparency, just like we expected.In order to test the performance of both algorithmson estimating the number of models automatically,we propose an example of one moving signal. InFig. 5 we show a random dot sequence with a sin-gle motion with velocity (1;�1). In order to avoidthe over-�tting, both EM-algorithms should convergeto one speed. Actually this is the case. The spatialEM-algorithm converges to (1:000;�1:000) after 2 it-erations and the spectral EM-algorithm converges to(0:996;�1:002) after 5 iterations.In Fig. 6 we show a real example. The image se-quence is composed of one occluding signal movingfrom left to right and one occluded signal moving fromright to left. Both spatial and spectral EM-algorithmspresent satisfactory results with a better performanceof the spectral algorithm. With � = �4 we obtain Raof 0:242 and 0:017 for thresholds of 0:1% and 1%. Byusing the spatial coherence we can further localize theoccluding boundary which is displayed as intersectionof zero regions in �I1 and �I2. Unfortunately, wehave not been able to �nd a real sequence with trans-parency in order to further strengthen the argumentsfor the spectral treatment.6 DiscussionWe presented a formal model for the occlusion inthe spectral domain. In contrast to ad hoc EM-algorithms in the spatial domain we can exactly de-scribe the distortion to occlusion and employ an al-gorithm on the discrimination between occlusion andtransparency. The superior performance of the spec-tral EM-algorithm relies on the correct model of mul-



Figure 5: The over-�tting problem is avoided success-fully in applying EM algorithms. Top: Three consec-utive frames of a random dot sequence moving witha single speed (1;�1). Bottom: The spectrum sec-tions. The origin lies in the middle of the image. Fromleft to right: !y�!t, !y�!x, and !x�!t section. Bothspatial and spectral EM converge to a single speed.tiple motion. Current spatial EM algorithms assumewithout a proof that both occlusion and transparencycan be modeled by two instances of the brightnesschange constraint equation. Unfortunately, the spec-tral domain su�ers under limited resolution so thatthe �nal veri�cation test for occlusion is performed inthe spatial domain. The assumed spatial coherence isthe �nal cue that enables us to distinguish occlusionand transparency.We have to study the behavior of the EM-algorithmboth in the spectral and the spatial domain when twovelocities of the occluding and the occluded signal con-verge to one speed. Alternative methods to the EMprinciple like the recent formalization of the groupingprocess [20] using normalized cuts have to be inves-tigated with respect to their appropriateness to thegiven problem.References[1] A. P. Dempster , N. M. Laird , and D. B. Rubin. Maximumlikelihood from incomplete data via the EM algorithm. J.R. Statist. Soc. B, 39:1{38, 1977.[2] E. H. Adelson and J. R. Bergen. Spatiotemporal energymodels for the perception of motion. Journal of the OpticalSociety of America, 1(2):284{299, 1985.[3] S. S. Beauchemin and J. L. Barron. A Theory of Oc-clusion in the Context of Optical Flow. In Advances inComputer Vision, Springer Wien New-York, F. Solina,W. Kropatsch, R. Klette and R. Bajcsy Eds., pp. 191-200,Nov., 1997.[4] S.S. Beauchemin and J.L. Barron. The computation ofoptical ow. ACM Computing Surveys, 27:433{467, 1995.[5] D.J. Fleet, M.J. Black, and A.D. Jepson. Motion fea-ture detection using steerable ow �elds. In IEEE Conf.Computer Vision and Pattern Recognition, pages 274{281,Santa Barbara, CA, June 23-25, 1998.

Figure 6: Top: The �rst, 16-th and 32-th frames ofthe image sequence. A cube around the occludingboundary is marked with a white box in the 16-thframe. Middle: The spectrum of the cube shownwith three sections. From left to right: !y�!t, !y�!x,and !x�!t section. We apply the EM-algorithm with� = 0:1 and initial speeds (1:2;�0:1) and (0:8; 0:3).After 12 iterations the estimated speeds are stabile.The results using spatial EM are (1:239; 0:332) and(�1:299;�0:051) and the results using spectral EMare (0:985; 0:002) and (�1:137;�0:029). Since bothsignals move almost horizontally the vertical motioncomponents should be near zero. The spatial EMshows a higher error. Bottom Left: �I1. Bot-tom Right: �I2. For clarity we zoom in the regionnear the occluding boundary. We can see that twocomplementary regions with zero value are boundedby the occluding boundary.[6] M. J. Black and P. Anandan. The robust estimationof mul-tiple motions: parametricand piecewise-smoothow �elds.Computer Vision and Image Understanding, 63(1):75{104,1996.[7] P. Bouthemy. A maximum likelihood framework for deter-mining moving edges. IEEE Trans. Pattern Analysis andMachine Intelligence, 11:499{511, 1989.[8] G. T. Chou. A model of �gure-ground segregation fromkinetic occlusion. In Proc. Int. Conf. on Computer Vision,pages 1050{1057, Boston, MA, June 20-23, 1995.[9] D.J. Fleet and K. Langley. Computational analysis of non-fourier motion. Vision Research, 34:3057{3079, 1994.[10] G. H. Granlund and H. Knutsson. Signal Processing forComputer Vision. Kluwer Academic Publishers, 1995.[11] D. J. Heeger. Optical ow using spatiotemporal �lters.International Journal of Computer Vision, 1(4):279{302,1987.[12] J. R. Bergen , P. J. Burt , R. Hingorani, and S. Peleg. Athree-frame algorithm for estimating two-component im-



age motion. IEEE Trans. Pattern Analysis and MachineIntelligence, 14(9):886{895, 1992.[13] A. Jepson and M. Black. Mixture models for image repre-sentation. Technical Report ARK96-PUB-54, 1996.[14] A. Jepson and M. J. Black. Mixture models for opticalow computation. In IEEE Conf. Computer Vision andPattern Recognition, pages 760{761, New York, NY, June15-17, 1993.[15] H.H. Nagel and W. Enkelmann. An investigation ofsmoothness constraints for the estimation of displacementvector �elds from image sequences. IEEE Trans. PatternAnalysis and Machine Intelligence, 8:565{593, 1986.[16] H.H. Nagel and A. Gehrke. Spatiotemporally adaptive es-timation and segmentation of of-�elds. In Proc. Fifth Eu-ropean Conference on Computer Vision, volume II, pages86{102, Freiburg, Germany, June 2-6, H. Burkhardt (Ed.),Springer LNCS 1406, 1998.[17] M. Proesmans, L.J. VanGool, E. Pauwels, and A. Ooster-linck. Determination of optical ow and its discontinuitiesusing non-linear di�usion. In Proc. Third European Con-ference on Computer Vision, pages 295{304, Stockholm,Sweden, May 2-6, J.O. Eklundh (Ed.), Springer LNCS 801,1994.[18] M. Irani, B. Rousso, and S. Peleg. Computing occludingand transparent motions. International Journal of Com-puter Vision, 12:5{16, 1994.[19] B. Jaehne, H. Haussecker, H. Scharr, H. Spies, D.Schmundt, and U. Schurr. Study of dynamical processeswith tensor-based spatiotemporal image processing tech-niques. In Proc. Fifth European Conference on ComputerVision, volume II, pages 322{336, Freiburg,Germany, June2-6, H. Burkhardt (Ed.), Springer LNCS 1406, 1998.[20] J. Shi and J. Malik. Motion segmentationusing normalizedcuts. In Proc. Int. Conf. on Computer Vision, pages 1154{1160, Bombay, India, Jan. 4-7, 1998.[21] M. Shizawa and K. Mase. A uni�ed computational theoryfor motion transparency and motion boundaries based oneigenenergy analysis. In IEEE Conf. Computer Vision andPattern Recognition, pages 289{295,Maui, Hawaii, June 3-6, 1991.[22] Y. Weiss and E. H. Adelson. A uni�ed mixture frameworkfor motion segmentation: Incorporating spatial coherenceand estimating the number of models. In IEEE Conf. Com-puter Vision and Pattern Recognition, pages 321{326, SanFransisco, CA, June 18-20, 1996.[23] S.F. Wu and J. Kittler. A gradient-based method for gen-eral motion estimation and segmentation. Journal of Vi-sual Communication and Image Representation, 4:25{38,1993.Appendix: The Spectrum of OcclusionIn this section we derive the spectrum of occlusion.Substituting equation (5) into (4) and utilizing theproduct property of impulse function we have:~I(~�; !t) = 2�2 ~I1(~�)�(~�T~v1 + !t)+(1 � 2�2)~I2(~�)�(~�T~v2 + !t)+ 2�i~�T �̂ �(~�T �̂?; ~�T~v1 + !t) � ~I1(~�)�(~�T~v1 + !t)� 2�i~�T �̂ �(~�T �̂?; ~�T~v1 + !t) � ~I2(~�)�(~�T~v2 + !t)(21)

For simpli�cation we de�ne the third part asA(~�; !t) and the fourth B(~�; !t). Denoting with Fand F�1 the forward and inverse Fourier transforma-tion we have:A(~�; !t) = 2�i~�T �̂ �(~�T �̂?; ~�T~v1 + !t) � ~I1(~�)�(~�T~v1 + !t)= Ff[F�1( 2�i~�T �̂ �(~�T �̂?; ~�T~v1 + !t))]�[F�1(~I1(~�)�(~�T~v1 + !t))]gThe �rst part of the convolution is a line in 3D fre-quency space and the second part is a plane containingthe line in the �rst part. Due to the relative symme-try of F and F�1 [10] the �rst part turns out to be animpulse plane in spatial domain after inverse Fouriertransformation and the second part is then an impulseline on this plane. Their multiplication results in animpulse line in 3D spatial domain. We take the for-ward Fourier transformation again and obtain an im-pulse plane with the orientation of ~�T~v1 + !t = 0.Taking the coe�cients into our account we have:A(~�; !t) = [ 2�i~�T �̂ � ~I1(~�)]�(~�T~v1 + !t) (22)Taking into account that A(~�; !t) has the sameorientation as occluding signal we draw a conclusionthat this part of distortion just does nothing else asstrengthening the spectrum of occluding signal.The term B(~�; !t) can be computed similarly:B(~�; !t) = 2�i~�T �̂ �(~�T �̂?; ~�T~v1 + !t) � ~I2(~�)�(~�T~v2 + !t)= Ff[F�1( 2�i~�T �̂ �(~�T �̂?; ~�T~v1 + !t))]�[F�1(~I2(~�)�(~�T~v2 + !t))]gThe di�erence here is that the two parts of the con-volution do not have the same orientation (~v1 6= ~v2).Therefore, we obtain only one point in 3D spatial do-main after multiplication. Correspondingly, the dis-tortion is overall in the frequency space. Moreover,the coe�cient of B(~�; !t) is not dependent on !t:B(~�; !t) = [ 2�i~�T �̂ � ~I2(~�)]�(~�T~v1 + !t) (23)Thus, we obtain the equation (6).


